Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743132428> ?p ?o ?g. }
- W2743132428 endingPage "169" @default.
- W2743132428 startingPage "159" @default.
- W2743132428 abstract "Climate change is a major issue for the wine industry. Climate and in particular temperature plays a key role in vine physiology and phenology. Temperatures can be highly variable inside a winegrowing region and they are strongly related to local environment (topography, water bodies, vegetation, urban areas...). General Circulation Models (GCM) and dynamical regional models can not take into account this local variability due to their low resolution. For fine scale modeling, a classic option is to create model based on Multiple Linear Regression (MLR) using temperature as dependant variable and local parameters as predictor variables. Though efficient, the non-linearity assumption is a strong constraint that limits performances of spatial models at the vineyard scale. In this study, we compared two fully automated methods which estimate daily temperature and temperature sums at a very fine scale, based on linear (MLR) and non-linear (Support Vector Regression: SVR) assumptions. Data were registered using a network of temperature data loggers installed in 2011 in renown sub-appellations of the Bordeaux area, including Saint-Emilion and Pomerol. Three growing seasons were studied 2012, 2013 and 2014. Model validation showed that SVR presented better results in each case thanks to the non linear component, for an equivalent computing time. Our study has highlighted that a high density network produces maps with a wider range of temperatures compared to medium to low density networks commonly used at a regional scale. In this article, a replicable and highly accurate model was created to produce fine scale temperature maps. Assessment of precise temperature variability at fine scale is essential to allow wine industry to adapt to climate change." @default.
- W2743132428 created "2017-08-17" @default.
- W2743132428 creator A5011648299 @default.
- W2743132428 creator A5036109255 @default.
- W2743132428 creator A5046531394 @default.
- W2743132428 creator A5059825324 @default.
- W2743132428 creator A5063579253 @default.
- W2743132428 creator A5068758658 @default.
- W2743132428 creator A5085830596 @default.
- W2743132428 date "2017-12-01" @default.
- W2743132428 modified "2023-10-15" @default.
- W2743132428 title "Comparison of two fine scale spatial models for mapping temperatures inside winegrowing areas" @default.
- W2743132428 cites W1169597742 @default.
- W2743132428 cites W1534549470 @default.
- W2743132428 cites W1594793571 @default.
- W2743132428 cites W1946131059 @default.
- W2743132428 cites W1981733468 @default.
- W2743132428 cites W1982811194 @default.
- W2743132428 cites W1983219887 @default.
- W2743132428 cites W1989503358 @default.
- W2743132428 cites W2005230415 @default.
- W2743132428 cites W2019017066 @default.
- W2743132428 cites W2031416051 @default.
- W2743132428 cites W2046157478 @default.
- W2743132428 cites W2053918987 @default.
- W2743132428 cites W2057762166 @default.
- W2743132428 cites W2070938989 @default.
- W2743132428 cites W2075058803 @default.
- W2743132428 cites W2089055951 @default.
- W2743132428 cites W2096713404 @default.
- W2743132428 cites W2098165261 @default.
- W2743132428 cites W2102148524 @default.
- W2743132428 cites W2111849582 @default.
- W2743132428 cites W2113870447 @default.
- W2743132428 cites W2128195089 @default.
- W2743132428 cites W2133394702 @default.
- W2743132428 cites W2155300412 @default.
- W2743132428 cites W2171629540 @default.
- W2743132428 cites W2172064003 @default.
- W2743132428 cites W2433811008 @default.
- W2743132428 cites W3104887532 @default.
- W2743132428 cites W4239510810 @default.
- W2743132428 doi "https://doi.org/10.1016/j.agrformet.2017.07.020" @default.
- W2743132428 hasPublicationYear "2017" @default.
- W2743132428 type Work @default.
- W2743132428 sameAs 2743132428 @default.
- W2743132428 citedByCount "24" @default.
- W2743132428 countsByYear W27431324282017 @default.
- W2743132428 countsByYear W27431324282018 @default.
- W2743132428 countsByYear W27431324282020 @default.
- W2743132428 countsByYear W27431324282021 @default.
- W2743132428 countsByYear W27431324282022 @default.
- W2743132428 countsByYear W27431324282023 @default.
- W2743132428 crossrefType "journal-article" @default.
- W2743132428 hasAuthorship W2743132428A5011648299 @default.
- W2743132428 hasAuthorship W2743132428A5036109255 @default.
- W2743132428 hasAuthorship W2743132428A5046531394 @default.
- W2743132428 hasAuthorship W2743132428A5059825324 @default.
- W2743132428 hasAuthorship W2743132428A5063579253 @default.
- W2743132428 hasAuthorship W2743132428A5068758658 @default.
- W2743132428 hasAuthorship W2743132428A5085830596 @default.
- W2743132428 hasConcept C105795698 @default.
- W2743132428 hasConcept C132651083 @default.
- W2743132428 hasConcept C134306372 @default.
- W2743132428 hasConcept C153294291 @default.
- W2743132428 hasConcept C158709400 @default.
- W2743132428 hasConcept C159985019 @default.
- W2743132428 hasConcept C163175372 @default.
- W2743132428 hasConcept C166957645 @default.
- W2743132428 hasConcept C168754636 @default.
- W2743132428 hasConcept C182365436 @default.
- W2743132428 hasConcept C18903297 @default.
- W2743132428 hasConcept C192562407 @default.
- W2743132428 hasConcept C204323151 @default.
- W2743132428 hasConcept C205649164 @default.
- W2743132428 hasConcept C2778755073 @default.
- W2743132428 hasConcept C2778760939 @default.
- W2743132428 hasConcept C2780924976 @default.
- W2743132428 hasConcept C33923547 @default.
- W2743132428 hasConcept C39432304 @default.
- W2743132428 hasConcept C41008148 @default.
- W2743132428 hasConcept C48921125 @default.
- W2743132428 hasConcept C58640448 @default.
- W2743132428 hasConcept C86803240 @default.
- W2743132428 hasConceptScore W2743132428C105795698 @default.
- W2743132428 hasConceptScore W2743132428C132651083 @default.
- W2743132428 hasConceptScore W2743132428C134306372 @default.
- W2743132428 hasConceptScore W2743132428C153294291 @default.
- W2743132428 hasConceptScore W2743132428C158709400 @default.
- W2743132428 hasConceptScore W2743132428C159985019 @default.
- W2743132428 hasConceptScore W2743132428C163175372 @default.
- W2743132428 hasConceptScore W2743132428C166957645 @default.
- W2743132428 hasConceptScore W2743132428C168754636 @default.
- W2743132428 hasConceptScore W2743132428C182365436 @default.
- W2743132428 hasConceptScore W2743132428C18903297 @default.
- W2743132428 hasConceptScore W2743132428C192562407 @default.
- W2743132428 hasConceptScore W2743132428C204323151 @default.
- W2743132428 hasConceptScore W2743132428C205649164 @default.