Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743148522> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2743148522 abstract "This paper presents steady and unsteady computational results obtained from numerical solutions of the full two-dimensional governing equations for annular internal condensing flows in a channel. This is achieved by active integration of our own home grown codes and utilization of COMSOL Multiphysics® CFD and Heat Transfer modules. This has allowed for an accurate wave simulation technique for the highly sensitive, shear-driven, annular condensing flows. The simulation capability uses an approach of separately solving (via COMSOL) the unsteady liquid and vapor domain governing equations over their respective fixed domains resulting from an assumed sharp interface location, tracking the interface (by solving its evolution equation in MATLAB®) using a moving grid, and then iteratively re-solving the unsteady liquid and vapor domain governing equations while satisfying the remaining interface conditions. Here liquid and vapor domain unsteady equations are solved on fixed grids and suitable boundary conditions are imposed with the help of COMSOL's CFD and Heat Transfer Modules. Interface evolution equation is a wave equation which is solved (with the help of the well-defined characteristics equation underlying this problem) with 4th order accuracy in time. The resulting accurate prediction of interface location is used to iteratively redefine the liquid/vapor domains with COMSOL Multiphysics®. The approach ensures accurate prediction of interface location and interface variables towards accurate satisfaction of all the time-varying interface conditions. For example, at any point on the interface, the mass flux values computed from three different methods one using predicted kinematics of vapor velocity and local interface profile, one using predicted kinematics of liquid velocity and local interface profile, and one based on the energy balance show excellent agreement with one another. Figure 1 highlights the difference in the streamlines patterns and film thickness variations for a shear driven steady condensing flow in a horizontal channel and its analogous gravity driven condensing flow in an inclined channel. The horizontal flows exhibit much thicker films (and poorer heat-transfer rates) with the liquid tending to lift upwards from the condensing-surface. The basic features of the flows as well as their stability (see Figure 2) are obtained for the case of negligible externally imposed fluctuations. The computational simulation results agree with experimentally measured values of heat-flux and the length of the annular regime. This unsteady wave simulation capability is able to capture the destabilizing wave growth tendencies that govern the transition from the annular regime of a shear-driven steady flow to its non-annular regime. This unsteady wave simulation capability is used to predict the heat transfer rates and length of annular regimes for condensing flows. It is also being used to track the transition from the annular regime of a shear-driven steady flow to other non-annular regime. In addition, results obtained for inclined, horizontal, and zero-gravity cases (with and without surface-tension) bring out the differences between shear driven and gravity assisted/driven flows. This accurate simulation capability leads to significant improvements over our previous simulation capabilities and over other existing fixed grid solution techniques. Figures used in the abstract Figure 1: Fig. 1: (a) Shear driven flow streamlines and film-thickness variations for a steady condensing flow simulation in a horizontal channel. (b) Analogous results for gravity driven flows in a 2deg downward titled channel. (Flow conditionsfluid = FC-72, inlet pressure = 101 kPa, channel height = 2 mm, inlet mass flow rate = 0.4 g/s, and ΔT = 17.5 oC). Figure 2: Fig. 2: The 0 m ≤ x ≤ 0.57 m steady and unsteady simulations in this figure are for an experimental case (Flow conditionsfluid = FC-72, inlet pressure = 101 kPa, channel height = 2 mm, inlet mass flow rate = 1.0 g/s, and experimental wall temperature variation). The initial disturbance at t = 0 s (with three different wavelengths) and its unsteady evolution at t = 0.05 s are shown. The steepening and growing wave front around x = xA has been assessed to indicate transition from annular to non-annular regimes." @default.
- W2743148522 created "2017-08-17" @default.
- W2743148522 creator A5017270084 @default.
- W2743148522 creator A5020343154 @default.
- W2743148522 creator A5049235039 @default.
- W2743148522 creator A5053113642 @default.
- W2743148522 date "2013-01-01" @default.
- W2743148522 modified "2023-09-26" @default.
- W2743148522 title "Steady and unsteady computational results of full two dimensional governing equations for annular internal condensing flows" @default.
- W2743148522 cites W1539871007 @default.
- W2743148522 cites W1980331662 @default.
- W2743148522 cites W1983134195 @default.
- W2743148522 cites W1986201099 @default.
- W2743148522 cites W1994140445 @default.
- W2743148522 cites W2001301900 @default.
- W2743148522 cites W2015109624 @default.
- W2743148522 cites W2036664556 @default.
- W2743148522 cites W2045545335 @default.
- W2743148522 cites W2057072359 @default.
- W2743148522 cites W2060003021 @default.
- W2743148522 cites W2089258335 @default.
- W2743148522 cites W2092804604 @default.
- W2743148522 cites W2093834886 @default.
- W2743148522 cites W2744825045 @default.
- W2743148522 cites W3045730032 @default.
- W2743148522 hasPublicationYear "2013" @default.
- W2743148522 type Work @default.
- W2743148522 sameAs 2743148522 @default.
- W2743148522 citedByCount "3" @default.
- W2743148522 countsByYear W27431485222014 @default.
- W2743148522 countsByYear W27431485222020 @default.
- W2743148522 crossrefType "journal-article" @default.
- W2743148522 hasAuthorship W2743148522A5017270084 @default.
- W2743148522 hasAuthorship W2743148522A5020343154 @default.
- W2743148522 hasAuthorship W2743148522A5049235039 @default.
- W2743148522 hasAuthorship W2743148522A5053113642 @default.
- W2743148522 hasConcept C113843644 @default.
- W2743148522 hasConcept C121332964 @default.
- W2743148522 hasConcept C129307140 @default.
- W2743148522 hasConcept C134306372 @default.
- W2743148522 hasConcept C135628077 @default.
- W2743148522 hasConcept C157915830 @default.
- W2743148522 hasConcept C1633027 @default.
- W2743148522 hasConcept C182310444 @default.
- W2743148522 hasConcept C33923547 @default.
- W2743148522 hasConcept C41008148 @default.
- W2743148522 hasConcept C46435376 @default.
- W2743148522 hasConcept C50517652 @default.
- W2743148522 hasConcept C57879066 @default.
- W2743148522 hasConcept C97355855 @default.
- W2743148522 hasConceptScore W2743148522C113843644 @default.
- W2743148522 hasConceptScore W2743148522C121332964 @default.
- W2743148522 hasConceptScore W2743148522C129307140 @default.
- W2743148522 hasConceptScore W2743148522C134306372 @default.
- W2743148522 hasConceptScore W2743148522C135628077 @default.
- W2743148522 hasConceptScore W2743148522C157915830 @default.
- W2743148522 hasConceptScore W2743148522C1633027 @default.
- W2743148522 hasConceptScore W2743148522C182310444 @default.
- W2743148522 hasConceptScore W2743148522C33923547 @default.
- W2743148522 hasConceptScore W2743148522C41008148 @default.
- W2743148522 hasConceptScore W2743148522C46435376 @default.
- W2743148522 hasConceptScore W2743148522C50517652 @default.
- W2743148522 hasConceptScore W2743148522C57879066 @default.
- W2743148522 hasConceptScore W2743148522C97355855 @default.
- W2743148522 hasLocation W27431485221 @default.
- W2743148522 hasOpenAccess W2743148522 @default.
- W2743148522 hasPrimaryLocation W27431485221 @default.
- W2743148522 hasRelatedWork W1581887867 @default.
- W2743148522 hasRelatedWork W1601289286 @default.
- W2743148522 hasRelatedWork W1625188214 @default.
- W2743148522 hasRelatedWork W1995747136 @default.
- W2743148522 hasRelatedWork W1996854552 @default.
- W2743148522 hasRelatedWork W2006193160 @default.
- W2743148522 hasRelatedWork W2017582898 @default.
- W2743148522 hasRelatedWork W2022089101 @default.
- W2743148522 hasRelatedWork W2024112593 @default.
- W2743148522 hasRelatedWork W2038243398 @default.
- W2743148522 hasRelatedWork W2078997311 @default.
- W2743148522 hasRelatedWork W2133328550 @default.
- W2743148522 hasRelatedWork W2153019665 @default.
- W2743148522 hasRelatedWork W2160265688 @default.
- W2743148522 hasRelatedWork W2341173166 @default.
- W2743148522 hasRelatedWork W2355688931 @default.
- W2743148522 hasRelatedWork W2570388692 @default.
- W2743148522 hasRelatedWork W2801012496 @default.
- W2743148522 hasRelatedWork W55265251 @default.
- W2743148522 hasRelatedWork W2123301385 @default.
- W2743148522 isParatext "false" @default.
- W2743148522 isRetracted "false" @default.
- W2743148522 magId "2743148522" @default.
- W2743148522 workType "article" @default.