Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743157055> ?p ?o ?g. }
- W2743157055 endingPage "156" @default.
- W2743157055 startingPage "141" @default.
- W2743157055 abstract "Gas-steam-droplet technologies are widely used in systems operating at high temperatures ranging between 400 and 2000 °C, namely: fire-fighting systems, thermal fluid cleaning, fuel compounding, industrial waste gasification and evaporation systems for advanced fuel components, cleaning of thermally loaded surfaces of power equipment, etc. System parameters are usually selected empirically via multiple tests and continuous trial operation of appropriate units, aggregates, assemblies, and installations. This situation is caused by insufficient basic knowledge of conditions and parameters of high-temperature (over 500 °C) heating and evaporation of water and water-based emulsions, solutions, and slurries. Limited information is available regarding the evaporation rates dependent on the temperature of gaseous medium. Consequently, the up-to-date evaporation models allow the researchers to achieve adequate values (in good agreement with the experiment) of evaporation rates at air temperatures not exceeding 300–400 °C. The paper presents a set of experiments on water droplets with the size ranging from 1 to 2 mm, which is used to create the information database on high-temperature evaporation parameters. The approach to measuring the evaporation rate involves observation of the droplet size or more exactly its mean radius, and recording the time of its existence. A high-speed video camera and Tema Automotive software with different tracking algorithms are used for experimental observations. During gas heating, the distribution of highly non-homogeneous and non-steady temperature field in evaporating water droplets is detected by the hardware and software cross-correlation system and Planar Laser-induced Fluorescence optical diagnostics. Instantaneous and medium evaporation rates are computed for the whole period of the droplet lifetime. Highly nonlinear evaporation rate dependences are suggested for gas temperatures and the water droplet surface, size, and time of gas heating. Approximate relationships are described for the prediction of evaporation rates depending on the basic parameters. The evaporation rate is shown to increase several-fold during the heating of a water droplet in a high-temperature gaseous medium. The experimental data are described most accurately by exponential dependences of water evaporation rate versus the airflow temperature and velocity. This result makes it possible to predict the corresponding highly nonlinear dependences of evaporation rate versus the density of convective heat flux and the overall thermal conditions in the industrial chambers, evaporators, heat exchangers, etc. The mathematical expressions obtained can be used to identify the effective conditions of water droplet heating in a large group of high-temperatures applications as well as for developing high-temperature liquid evaporation models." @default.
- W2743157055 created "2017-08-17" @default.
- W2743157055 creator A5045701525 @default.
- W2743157055 date "2017-12-01" @default.
- W2743157055 modified "2023-09-27" @default.
- W2743157055 title "Planar laser-induced fluorescence diagnostics of water droplets heating and evaporation at high-temperature" @default.
- W2743157055 cites W1966035629 @default.
- W2743157055 cites W1972802591 @default.
- W2743157055 cites W1980581696 @default.
- W2743157055 cites W1988955392 @default.
- W2743157055 cites W1989099564 @default.
- W2743157055 cites W1994109622 @default.
- W2743157055 cites W2006748745 @default.
- W2743157055 cites W2012270576 @default.
- W2743157055 cites W2013146729 @default.
- W2743157055 cites W2016834543 @default.
- W2743157055 cites W2019710680 @default.
- W2743157055 cites W2025518733 @default.
- W2743157055 cites W2034641174 @default.
- W2743157055 cites W2036584917 @default.
- W2743157055 cites W2037401228 @default.
- W2743157055 cites W2061916538 @default.
- W2743157055 cites W2064528931 @default.
- W2743157055 cites W2083709884 @default.
- W2743157055 cites W2134164231 @default.
- W2743157055 cites W2147773173 @default.
- W2743157055 cites W2252841134 @default.
- W2743157055 cites W2320825109 @default.
- W2743157055 cites W2336255409 @default.
- W2743157055 cites W2380446911 @default.
- W2743157055 cites W2410616472 @default.
- W2743157055 cites W2460679400 @default.
- W2743157055 cites W2507314915 @default.
- W2743157055 cites W2518451951 @default.
- W2743157055 cites W2531838728 @default.
- W2743157055 cites W2557024706 @default.
- W2743157055 cites W2579985855 @default.
- W2743157055 cites W2583916946 @default.
- W2743157055 cites W2588401287 @default.
- W2743157055 cites W2601802583 @default.
- W2743157055 cites W2605273510 @default.
- W2743157055 cites W2611598580 @default.
- W2743157055 doi "https://doi.org/10.1016/j.applthermaleng.2017.08.040" @default.
- W2743157055 hasPublicationYear "2017" @default.
- W2743157055 type Work @default.
- W2743157055 sameAs 2743157055 @default.
- W2743157055 citedByCount "66" @default.
- W2743157055 countsByYear W27431570552017 @default.
- W2743157055 countsByYear W27431570552018 @default.
- W2743157055 countsByYear W27431570552019 @default.
- W2743157055 countsByYear W27431570552020 @default.
- W2743157055 countsByYear W27431570552021 @default.
- W2743157055 countsByYear W27431570552022 @default.
- W2743157055 countsByYear W27431570552023 @default.
- W2743157055 crossrefType "journal-article" @default.
- W2743157055 hasAuthorship W2743157055A5045701525 @default.
- W2743157055 hasConcept C116915560 @default.
- W2743157055 hasConcept C121332964 @default.
- W2743157055 hasConcept C127413603 @default.
- W2743157055 hasConcept C153294291 @default.
- W2743157055 hasConcept C178635117 @default.
- W2743157055 hasConcept C192562407 @default.
- W2743157055 hasConcept C204530211 @default.
- W2743157055 hasConcept C21880701 @default.
- W2743157055 hasConcept C38652104 @default.
- W2743157055 hasConcept C39432304 @default.
- W2743157055 hasConcept C41008148 @default.
- W2743157055 hasConcept C57879066 @default.
- W2743157055 hasConcept C61441594 @default.
- W2743157055 hasConcept C72293138 @default.
- W2743157055 hasConcept C78519656 @default.
- W2743157055 hasConcept C97355855 @default.
- W2743157055 hasConceptScore W2743157055C116915560 @default.
- W2743157055 hasConceptScore W2743157055C121332964 @default.
- W2743157055 hasConceptScore W2743157055C127413603 @default.
- W2743157055 hasConceptScore W2743157055C153294291 @default.
- W2743157055 hasConceptScore W2743157055C178635117 @default.
- W2743157055 hasConceptScore W2743157055C192562407 @default.
- W2743157055 hasConceptScore W2743157055C204530211 @default.
- W2743157055 hasConceptScore W2743157055C21880701 @default.
- W2743157055 hasConceptScore W2743157055C38652104 @default.
- W2743157055 hasConceptScore W2743157055C39432304 @default.
- W2743157055 hasConceptScore W2743157055C41008148 @default.
- W2743157055 hasConceptScore W2743157055C57879066 @default.
- W2743157055 hasConceptScore W2743157055C61441594 @default.
- W2743157055 hasConceptScore W2743157055C72293138 @default.
- W2743157055 hasConceptScore W2743157055C78519656 @default.
- W2743157055 hasConceptScore W2743157055C97355855 @default.
- W2743157055 hasLocation W27431570551 @default.
- W2743157055 hasOpenAccess W2743157055 @default.
- W2743157055 hasPrimaryLocation W27431570551 @default.
- W2743157055 hasRelatedWork W1994879380 @default.
- W2743157055 hasRelatedWork W2000616164 @default.
- W2743157055 hasRelatedWork W2004197633 @default.
- W2743157055 hasRelatedWork W2036123590 @default.
- W2743157055 hasRelatedWork W2065587533 @default.
- W2743157055 hasRelatedWork W2153788750 @default.
- W2743157055 hasRelatedWork W2392763284 @default.