Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743213044> ?p ?o ?g. }
- W2743213044 endingPage "1035" @default.
- W2743213044 startingPage "1022" @default.
- W2743213044 abstract "A probabilistic seismic demand model that relates ground motion intensity measures (IMs) to the structural demand measures is a useful tool for reliability analysis of structures. It is common to utilize the scalar seismic parameters or a vector of a few seismic parameters to reveal ground motion uncertainty. However, for the qualification of an IM for representing the ground motion uncertainty, a larger vector of greater seismic component is required. This study aims to use more parameters as vector IMs in the demand model to achieve better estimation of the ground motion uncertainty. In this study, three-layer feed forward neural network was used to predict the seismic demand model of the mid-rise reinforced concrete buildings for pulse-like ground motions. The results indicate that due to the complexity of the relationship between seismic response of structures and seismic intensity parameters, using artificial neural networks method is more suitable than numerical methods to show uncertainties." @default.
- W2743213044 created "2017-08-17" @default.
- W2743213044 creator A5016834785 @default.
- W2743213044 creator A5088110135 @default.
- W2743213044 date "2017-12-01" @default.
- W2743213044 modified "2023-10-14" @default.
- W2743213044 title "Prediction of seismic demand model for pulse-like ground motions using artificial neural networks" @default.
- W2743213044 cites W1590459064 @default.
- W2743213044 cites W1967584975 @default.
- W2743213044 cites W1969142761 @default.
- W2743213044 cites W1971647087 @default.
- W2743213044 cites W1982870805 @default.
- W2743213044 cites W2014712737 @default.
- W2743213044 cites W2025001136 @default.
- W2743213044 cites W2044078938 @default.
- W2743213044 cites W2044516953 @default.
- W2743213044 cites W2045000458 @default.
- W2743213044 cites W2046207241 @default.
- W2743213044 cites W2048454736 @default.
- W2743213044 cites W2051812123 @default.
- W2743213044 cites W2064136647 @default.
- W2743213044 cites W2064945474 @default.
- W2743213044 cites W2077458446 @default.
- W2743213044 cites W2086442205 @default.
- W2743213044 cites W2090018636 @default.
- W2743213044 cites W2091019156 @default.
- W2743213044 cites W2114419783 @default.
- W2743213044 cites W2116538711 @default.
- W2743213044 cites W2119119735 @default.
- W2743213044 cites W2129178344 @default.
- W2743213044 cites W2132446465 @default.
- W2743213044 cites W2133485774 @default.
- W2743213044 cites W2138656682 @default.
- W2743213044 cites W2146081683 @default.
- W2743213044 cites W2148358264 @default.
- W2743213044 cites W2167996923 @default.
- W2743213044 cites W2169971590 @default.
- W2743213044 cites W238329476 @default.
- W2743213044 doi "https://doi.org/10.1139/cjce-2017-0043" @default.
- W2743213044 hasPublicationYear "2017" @default.
- W2743213044 type Work @default.
- W2743213044 sameAs 2743213044 @default.
- W2743213044 citedByCount "3" @default.
- W2743213044 countsByYear W27432130442020 @default.
- W2743213044 countsByYear W27432130442021 @default.
- W2743213044 countsByYear W27432130442022 @default.
- W2743213044 crossrefType "journal-article" @default.
- W2743213044 hasAuthorship W2743213044A5016834785 @default.
- W2743213044 hasAuthorship W2743213044A5088110135 @default.
- W2743213044 hasBestOaLocation W27432130442 @default.
- W2743213044 hasConcept C121332964 @default.
- W2743213044 hasConcept C127413603 @default.
- W2743213044 hasConcept C154945302 @default.
- W2743213044 hasConcept C159737794 @default.
- W2743213044 hasConcept C163258240 @default.
- W2743213044 hasConcept C182358397 @default.
- W2743213044 hasConcept C2524010 @default.
- W2743213044 hasConcept C2988284105 @default.
- W2743213044 hasConcept C33923547 @default.
- W2743213044 hasConcept C39267094 @default.
- W2743213044 hasConcept C41008148 @default.
- W2743213044 hasConcept C43214815 @default.
- W2743213044 hasConcept C49937458 @default.
- W2743213044 hasConcept C50644808 @default.
- W2743213044 hasConcept C57691317 @default.
- W2743213044 hasConcept C62520636 @default.
- W2743213044 hasConcept C64370902 @default.
- W2743213044 hasConcept C66938386 @default.
- W2743213044 hasConcept C8128475 @default.
- W2743213044 hasConceptScore W2743213044C121332964 @default.
- W2743213044 hasConceptScore W2743213044C127413603 @default.
- W2743213044 hasConceptScore W2743213044C154945302 @default.
- W2743213044 hasConceptScore W2743213044C159737794 @default.
- W2743213044 hasConceptScore W2743213044C163258240 @default.
- W2743213044 hasConceptScore W2743213044C182358397 @default.
- W2743213044 hasConceptScore W2743213044C2524010 @default.
- W2743213044 hasConceptScore W2743213044C2988284105 @default.
- W2743213044 hasConceptScore W2743213044C33923547 @default.
- W2743213044 hasConceptScore W2743213044C39267094 @default.
- W2743213044 hasConceptScore W2743213044C41008148 @default.
- W2743213044 hasConceptScore W2743213044C43214815 @default.
- W2743213044 hasConceptScore W2743213044C49937458 @default.
- W2743213044 hasConceptScore W2743213044C50644808 @default.
- W2743213044 hasConceptScore W2743213044C57691317 @default.
- W2743213044 hasConceptScore W2743213044C62520636 @default.
- W2743213044 hasConceptScore W2743213044C64370902 @default.
- W2743213044 hasConceptScore W2743213044C66938386 @default.
- W2743213044 hasConceptScore W2743213044C8128475 @default.
- W2743213044 hasIssue "12" @default.
- W2743213044 hasLocation W27432130441 @default.
- W2743213044 hasLocation W27432130442 @default.
- W2743213044 hasOpenAccess W2743213044 @default.
- W2743213044 hasPrimaryLocation W27432130441 @default.
- W2743213044 hasRelatedWork W2078150460 @default.
- W2743213044 hasRelatedWork W2127155981 @default.
- W2743213044 hasRelatedWork W2131680966 @default.
- W2743213044 hasRelatedWork W2363065476 @default.
- W2743213044 hasRelatedWork W2372519986 @default.