Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743223118> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2743223118 abstract "From the theory of Lie algebras it is known that any finite-dimensional Lie algebra can be represented as the sum of the semi-simple subalgebra and its maximal solvable ideal (Levi-Malcevs theorem). The semi-simple Lie algebra is a direct sum of simple ideals that were fully classified by Cartan. Moreover, A.I. Malcev showed that the study of solvable algebras can be reduced to the study of nilpotent ones. However, the problem of describing nilpotent Lie algebras is boundless, so their study should be carried out with additional conditions. One of these conditions is a restriction on the nilpotency index. One of the distinctive features of Leibniz algebras to the case of Lie algebras is that there are one-generated Leibniz algebras. Moreover, one-generated n-dimensional nilpotent Leibniz algebras have nilpotency index equal to n+1. Such algebras are called null-filiform Leibniz algebras. We are going to consider algebras defined by some specific identities and having a maximum index of nilpotency. Although the class of nilpotent filiform Leibniz algebras has a relatively simple structure, however, the problem of describing them is problematic, which is why they are studied with the imposition of conditions on graduation. During the classification of naturally graded filiform Leibniz algebras it became clear that a decrease of nilindex the problem of describing algebras becomes much more complicated. Therefore, such algebras are considered with additional restrictions, such as restrictions on the characteristic sequence of algebra. We plan to get the description of the n-dimensional naturally graded Leibniz algebras with a characteristic sequence equal to (n-m, m)." @default.
- W2743223118 created "2017-08-17" @default.
- W2743223118 creator A5030288267 @default.
- W2743223118 date "2017-08-03" @default.
- W2743223118 modified "2023-09-23" @default.
- W2743223118 title "On some null-filiform algebras and solvable Leibniz algebras" @default.
- W2743223118 hasPublicationYear "2017" @default.
- W2743223118 type Work @default.
- W2743223118 sameAs 2743223118 @default.
- W2743223118 citedByCount "0" @default.
- W2743223118 crossrefType "dissertation" @default.
- W2743223118 hasAuthorship W2743223118A5030288267 @default.
- W2743223118 hasConcept C111472728 @default.
- W2743223118 hasConcept C136119220 @default.
- W2743223118 hasConcept C138885662 @default.
- W2743223118 hasConcept C202444582 @default.
- W2743223118 hasConcept C203763787 @default.
- W2743223118 hasConcept C203946495 @default.
- W2743223118 hasConcept C2780586882 @default.
- W2743223118 hasConcept C33923547 @default.
- W2743223118 hasConcept C41008148 @default.
- W2743223118 hasConcept C50555996 @default.
- W2743223118 hasConcept C51568863 @default.
- W2743223118 hasConcept C518143113 @default.
- W2743223118 hasConcept C67996461 @default.
- W2743223118 hasConcept C73648015 @default.
- W2743223118 hasConcept C77088390 @default.
- W2743223118 hasConcept C99634282 @default.
- W2743223118 hasConceptScore W2743223118C111472728 @default.
- W2743223118 hasConceptScore W2743223118C136119220 @default.
- W2743223118 hasConceptScore W2743223118C138885662 @default.
- W2743223118 hasConceptScore W2743223118C202444582 @default.
- W2743223118 hasConceptScore W2743223118C203763787 @default.
- W2743223118 hasConceptScore W2743223118C203946495 @default.
- W2743223118 hasConceptScore W2743223118C2780586882 @default.
- W2743223118 hasConceptScore W2743223118C33923547 @default.
- W2743223118 hasConceptScore W2743223118C41008148 @default.
- W2743223118 hasConceptScore W2743223118C50555996 @default.
- W2743223118 hasConceptScore W2743223118C51568863 @default.
- W2743223118 hasConceptScore W2743223118C518143113 @default.
- W2743223118 hasConceptScore W2743223118C67996461 @default.
- W2743223118 hasConceptScore W2743223118C73648015 @default.
- W2743223118 hasConceptScore W2743223118C77088390 @default.
- W2743223118 hasConceptScore W2743223118C99634282 @default.
- W2743223118 hasLocation W27432231181 @default.
- W2743223118 hasOpenAccess W2743223118 @default.
- W2743223118 hasPrimaryLocation W27432231181 @default.
- W2743223118 hasRelatedWork W144653657 @default.
- W2743223118 hasRelatedWork W1526977946 @default.
- W2743223118 hasRelatedWork W1966037142 @default.
- W2743223118 hasRelatedWork W1976078780 @default.
- W2743223118 hasRelatedWork W1987762556 @default.
- W2743223118 hasRelatedWork W2080204265 @default.
- W2743223118 hasRelatedWork W2087431795 @default.
- W2743223118 hasRelatedWork W2156487801 @default.
- W2743223118 hasRelatedWork W2158305318 @default.
- W2743223118 hasRelatedWork W2528827555 @default.
- W2743223118 hasRelatedWork W2732419538 @default.
- W2743223118 hasRelatedWork W2741001742 @default.
- W2743223118 hasRelatedWork W2803331115 @default.
- W2743223118 hasRelatedWork W2963434366 @default.
- W2743223118 hasRelatedWork W2963460773 @default.
- W2743223118 hasRelatedWork W2964053824 @default.
- W2743223118 hasRelatedWork W2965642211 @default.
- W2743223118 hasRelatedWork W3173598407 @default.
- W2743223118 hasRelatedWork W3176125066 @default.
- W2743223118 hasRelatedWork W982284242 @default.
- W2743223118 isParatext "false" @default.
- W2743223118 isRetracted "false" @default.
- W2743223118 magId "2743223118" @default.
- W2743223118 workType "dissertation" @default.