Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743255627> ?p ?o ?g. }
- W2743255627 endingPage "6565" @default.
- W2743255627 startingPage "6547" @default.
- W2743255627 abstract "With the rapid development of spectral imaging techniques, classification of hyperspectral images (HSIs) has attracted great attention in various applications such as land survey and resource monitoring in the field of remote sensing. A key challenge in HSI classification is how to explore effective approaches to fully use the spatial-spectral information provided by the data cube. Multiple kernel learning (MKL) has been successfully applied to HSI classification due to its capacity to handle heterogeneous fusion of both spectral and spatial features. This approach can generate an adaptive kernel as an optimally weighted sum of a few fixed kernels to model a nonlinear data structure. In this way, the difficulty of kernel selection and the limitation of a fixed kernel can be alleviated. Various MKL algorithms have been developed in recent years, such as the general MKL, the subspace MKL, the nonlinear MKL, the sparse MKL, and the ensemble MKL. The goal of this paper is to provide a systematic review of MKL methods, which have been applied to HSI classification. We also analyze and evaluate different MKL algorithms and their respective characteristics in different cases of HSI classification cases. Finally, we discuss the future direction and trends of research in this area." @default.
- W2743255627 created "2017-08-17" @default.
- W2743255627 creator A5002687387 @default.
- W2743255627 creator A5024631382 @default.
- W2743255627 creator A5034748006 @default.
- W2743255627 creator A5035508615 @default.
- W2743255627 date "2017-11-01" @default.
- W2743255627 modified "2023-10-06" @default.
- W2743255627 title "Multiple Kernel Learning for Hyperspectral Image Classification: A Review" @default.
- W2743255627 cites W1564111327 @default.
- W2743255627 cites W1581736742 @default.
- W2743255627 cites W1843514792 @default.
- W2743255627 cites W1848264314 @default.
- W2743255627 cites W1939429412 @default.
- W2743255627 cites W196321102 @default.
- W2743255627 cites W1970099214 @default.
- W2743255627 cites W1971891445 @default.
- W2743255627 cites W1973261010 @default.
- W2743255627 cites W1973521730 @default.
- W2743255627 cites W1985152886 @default.
- W2743255627 cites W1988790447 @default.
- W2743255627 cites W1989919782 @default.
- W2743255627 cites W1992314546 @default.
- W2743255627 cites W1996041299 @default.
- W2743255627 cites W1997565609 @default.
- W2743255627 cites W1997718749 @default.
- W2743255627 cites W2001298023 @default.
- W2743255627 cites W2002987700 @default.
- W2743255627 cites W2004746362 @default.
- W2743255627 cites W2004754531 @default.
- W2743255627 cites W2005353255 @default.
- W2743255627 cites W2008509935 @default.
- W2743255627 cites W2015603907 @default.
- W2743255627 cites W2015861736 @default.
- W2743255627 cites W2022361862 @default.
- W2743255627 cites W2022508996 @default.
- W2743255627 cites W2029316659 @default.
- W2743255627 cites W2031510368 @default.
- W2743255627 cites W2034803951 @default.
- W2743255627 cites W2037034832 @default.
- W2743255627 cites W2041100636 @default.
- W2743255627 cites W2041693072 @default.
- W2743255627 cites W2045095960 @default.
- W2743255627 cites W2048281487 @default.
- W2743255627 cites W2049444988 @default.
- W2743255627 cites W2051383118 @default.
- W2743255627 cites W2052160904 @default.
- W2743255627 cites W2059056443 @default.
- W2743255627 cites W2059217921 @default.
- W2743255627 cites W2061443113 @default.
- W2743255627 cites W2066916495 @default.
- W2743255627 cites W2067782748 @default.
- W2743255627 cites W2068067793 @default.
- W2743255627 cites W2069231830 @default.
- W2743255627 cites W2069412682 @default.
- W2743255627 cites W2069959554 @default.
- W2743255627 cites W2076414618 @default.
- W2743255627 cites W2077028485 @default.
- W2743255627 cites W2078296814 @default.
- W2743255627 cites W2078495963 @default.
- W2743255627 cites W2079539078 @default.
- W2743255627 cites W2085527057 @default.
- W2743255627 cites W2087263574 @default.
- W2743255627 cites W2089372326 @default.
- W2743255627 cites W2090424610 @default.
- W2743255627 cites W2096553553 @default.
- W2743255627 cites W2097915756 @default.
- W2743255627 cites W2098057602 @default.
- W2743255627 cites W2100495367 @default.
- W2743255627 cites W2100975942 @default.
- W2743255627 cites W2101711129 @default.
- W2743255627 cites W2104269704 @default.
- W2743255627 cites W2105386417 @default.
- W2743255627 cites W2107030918 @default.
- W2743255627 cites W2107919956 @default.
- W2743255627 cites W2111787810 @default.
- W2743255627 cites W2112589365 @default.
- W2743255627 cites W2113242816 @default.
- W2743255627 cites W2113636953 @default.
- W2743255627 cites W2114680940 @default.
- W2743255627 cites W2117741752 @default.
- W2743255627 cites W2118206198 @default.
- W2743255627 cites W2120184245 @default.
- W2743255627 cites W2120586165 @default.
- W2743255627 cites W2126796976 @default.
- W2743255627 cites W2129812935 @default.
- W2743255627 cites W2130325614 @default.
- W2743255627 cites W2131725398 @default.
- W2743255627 cites W2134601045 @default.
- W2743255627 cites W2135343619 @default.
- W2743255627 cites W2136251662 @default.
- W2743255627 cites W2144348684 @default.
- W2743255627 cites W2144679311 @default.
- W2743255627 cites W2145862305 @default.
- W2743255627 cites W2147800946 @default.
- W2743255627 cites W2149600041 @default.
- W2743255627 cites W2149606063 @default.
- W2743255627 cites W2150757437 @default.