Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743261128> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2743261128 abstract "Although process monitoring is important for maintaining safety and product quality, it is difficult to understand process characteristics particularly when they are changing. Since the correlation among variables changes due to changes in process characteristics, process data visualization based on the correlation among variables helps process characteristic understanding. In the present work, a new correlation-based data visualization method is proposed by integrating joint decorrelation (JD) and stochastic proximity embedding (SPE). JD is a blind source separation (BSS) method that can separates sample based on the correlation, and SPE is a self-organizing algorithm that can map high-dimensional data to a two-dimensional plane. The proposed method, referred to as JD-SPE, separates samples based on the correlation using JD and the separated samples are visualized in the two-dimensional plane by SPE. Correlation matrices have to be constructed before sample separation for JD; however how to construct them is not clear. The present work also proposes a correlation matrix construction method for JD by using nearest correlation spectral clustering (NCSC), which is a correlation-based clustering method. In addition, a new process monitoring method based on multivariate statistical process control (MSPC) which is a well-known process monitoring algorithm and JD-SPE. This monitoring method is referred to as JD-SPE-r2. The proposed JD-SPE-Γ2 can detect a fault that can not detected by the conventional MSPC. The usefulness of the proposed methods is demonstrated through numerical examples." @default.
- W2743261128 created "2017-08-17" @default.
- W2743261128 creator A5034630360 @default.
- W2743261128 creator A5062335613 @default.
- W2743261128 date "2017-07-01" @default.
- W2743261128 modified "2023-09-24" @default.
- W2743261128 title "Development of correlation-based process characteristics visualization method and its application to fault detection" @default.
- W2743261128 cites W1523185733 @default.
- W2743261128 cites W1966638365 @default.
- W2743261128 cites W1983821361 @default.
- W2743261128 cites W1999935041 @default.
- W2743261128 cites W2001141328 @default.
- W2743261128 cites W2003649177 @default.
- W2743261128 cites W2053186076 @default.
- W2743261128 cites W2057283314 @default.
- W2743261128 cites W2077496324 @default.
- W2743261128 cites W2077989687 @default.
- W2743261128 cites W2099741732 @default.
- W2743261128 cites W2134737843 @default.
- W2743261128 cites W2134738108 @default.
- W2743261128 cites W2169183548 @default.
- W2743261128 cites W2342906508 @default.
- W2743261128 cites W639344798 @default.
- W2743261128 doi "https://doi.org/10.1109/icca.2017.8003187" @default.
- W2743261128 hasPublicationYear "2017" @default.
- W2743261128 type Work @default.
- W2743261128 sameAs 2743261128 @default.
- W2743261128 citedByCount "0" @default.
- W2743261128 crossrefType "proceedings-article" @default.
- W2743261128 hasAuthorship W2743261128A5034630360 @default.
- W2743261128 hasAuthorship W2743261128A5062335613 @default.
- W2743261128 hasConcept C111919701 @default.
- W2743261128 hasConcept C117220453 @default.
- W2743261128 hasConcept C124101348 @default.
- W2743261128 hasConcept C152745839 @default.
- W2743261128 hasConcept C154945302 @default.
- W2743261128 hasConcept C172707124 @default.
- W2743261128 hasConcept C2524010 @default.
- W2743261128 hasConcept C33923547 @default.
- W2743261128 hasConcept C36464697 @default.
- W2743261128 hasConcept C41008148 @default.
- W2743261128 hasConcept C73555534 @default.
- W2743261128 hasConcept C98045186 @default.
- W2743261128 hasConceptScore W2743261128C111919701 @default.
- W2743261128 hasConceptScore W2743261128C117220453 @default.
- W2743261128 hasConceptScore W2743261128C124101348 @default.
- W2743261128 hasConceptScore W2743261128C152745839 @default.
- W2743261128 hasConceptScore W2743261128C154945302 @default.
- W2743261128 hasConceptScore W2743261128C172707124 @default.
- W2743261128 hasConceptScore W2743261128C2524010 @default.
- W2743261128 hasConceptScore W2743261128C33923547 @default.
- W2743261128 hasConceptScore W2743261128C36464697 @default.
- W2743261128 hasConceptScore W2743261128C41008148 @default.
- W2743261128 hasConceptScore W2743261128C73555534 @default.
- W2743261128 hasConceptScore W2743261128C98045186 @default.
- W2743261128 hasLocation W27432611281 @default.
- W2743261128 hasOpenAccess W2743261128 @default.
- W2743261128 hasPrimaryLocation W27432611281 @default.
- W2743261128 hasRelatedWork W1579506139 @default.
- W2743261128 hasRelatedWork W1971618503 @default.
- W2743261128 hasRelatedWork W2012771732 @default.
- W2743261128 hasRelatedWork W2072405524 @default.
- W2743261128 hasRelatedWork W2140327685 @default.
- W2743261128 hasRelatedWork W2299893680 @default.
- W2743261128 hasRelatedWork W2323314010 @default.
- W2743261128 hasRelatedWork W2369812607 @default.
- W2743261128 hasRelatedWork W2386078413 @default.
- W2743261128 hasRelatedWork W2393991997 @default.
- W2743261128 hasRelatedWork W2751584934 @default.
- W2743261128 hasRelatedWork W2828503120 @default.
- W2743261128 hasRelatedWork W2902977137 @default.
- W2743261128 hasRelatedWork W2918460052 @default.
- W2743261128 hasRelatedWork W2995860668 @default.
- W2743261128 hasRelatedWork W3008985298 @default.
- W2743261128 hasRelatedWork W3023056142 @default.
- W2743261128 hasRelatedWork W2357988546 @default.
- W2743261128 hasRelatedWork W2852516476 @default.
- W2743261128 hasRelatedWork W2985054921 @default.
- W2743261128 isParatext "false" @default.
- W2743261128 isRetracted "false" @default.
- W2743261128 magId "2743261128" @default.
- W2743261128 workType "article" @default.