Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743261605> ?p ?o ?g. }
- W2743261605 endingPage "1871" @default.
- W2743261605 startingPage "1867" @default.
- W2743261605 abstract "This paper proposes a highly accurate algorithm to estimate the signal-to-noise ratio (SNR) for a linear system from a single realization of the received signal. We assume that the linear system has a Gaussian matrix with one sided left correlation. The unknown entries of the signal and the noise are assumed to be independent and identically distributed with zero mean and can be drawn from any distribution. We use the ridge regression function of this linear model in company with tools and techniques adapted from random matrix theory to achieve, in closed form, accurate estimation of the SNR without prior statistical knowledge on the signal or the noise. Simulation results are provided, and show that the proposed method is very accurate." @default.
- W2743261605 created "2017-08-17" @default.
- W2743261605 creator A5010624135 @default.
- W2743261605 creator A5020869800 @default.
- W2743261605 creator A5032135059 @default.
- W2743261605 creator A5066119580 @default.
- W2743261605 date "2017-12-01" @default.
- W2743261605 modified "2023-10-03" @default.
- W2743261605 title "SNR Estimation in Linear Systems With Gaussian Matrices" @default.
- W2743261605 cites W1560210243 @default.
- W2743261605 cites W2023535408 @default.
- W2743261605 cites W2026964677 @default.
- W2743261605 cites W2087573023 @default.
- W2743261605 cites W2092734317 @default.
- W2743261605 cites W2098369756 @default.
- W2743261605 cites W2100053953 @default.
- W2743261605 cites W2100508089 @default.
- W2743261605 cites W2106553657 @default.
- W2743261605 cites W2108801140 @default.
- W2743261605 cites W2110652811 @default.
- W2743261605 cites W2128038754 @default.
- W2743261605 cites W2145614561 @default.
- W2743261605 cites W2150832756 @default.
- W2743261605 cites W2168078104 @default.
- W2743261605 cites W3104771306 @default.
- W2743261605 cites W4236362309 @default.
- W2743261605 doi "https://doi.org/10.1109/lsp.2017.2757398" @default.
- W2743261605 hasPublicationYear "2017" @default.
- W2743261605 type Work @default.
- W2743261605 sameAs 2743261605 @default.
- W2743261605 citedByCount "11" @default.
- W2743261605 countsByYear W27432616052018 @default.
- W2743261605 countsByYear W27432616052020 @default.
- W2743261605 countsByYear W27432616052021 @default.
- W2743261605 countsByYear W27432616052022 @default.
- W2743261605 countsByYear W27432616052023 @default.
- W2743261605 crossrefType "journal-article" @default.
- W2743261605 hasAuthorship W2743261605A5010624135 @default.
- W2743261605 hasAuthorship W2743261605A5020869800 @default.
- W2743261605 hasAuthorship W2743261605A5032135059 @default.
- W2743261605 hasAuthorship W2743261605A5066119580 @default.
- W2743261605 hasBestOaLocation W27432616052 @default.
- W2743261605 hasConcept C105795698 @default.
- W2743261605 hasConcept C11413529 @default.
- W2743261605 hasConcept C115961682 @default.
- W2743261605 hasConcept C121332964 @default.
- W2743261605 hasConcept C122123141 @default.
- W2743261605 hasConcept C134306372 @default.
- W2743261605 hasConcept C13944312 @default.
- W2743261605 hasConcept C141513077 @default.
- W2743261605 hasConcept C154945302 @default.
- W2743261605 hasConcept C158693339 @default.
- W2743261605 hasConcept C163716315 @default.
- W2743261605 hasConcept C199360897 @default.
- W2743261605 hasConcept C2779843651 @default.
- W2743261605 hasConcept C2781089630 @default.
- W2743261605 hasConcept C33923547 @default.
- W2743261605 hasConcept C41008148 @default.
- W2743261605 hasConcept C4199805 @default.
- W2743261605 hasConcept C62520636 @default.
- W2743261605 hasConcept C64812099 @default.
- W2743261605 hasConcept C6802819 @default.
- W2743261605 hasConcept C99498987 @default.
- W2743261605 hasConceptScore W2743261605C105795698 @default.
- W2743261605 hasConceptScore W2743261605C11413529 @default.
- W2743261605 hasConceptScore W2743261605C115961682 @default.
- W2743261605 hasConceptScore W2743261605C121332964 @default.
- W2743261605 hasConceptScore W2743261605C122123141 @default.
- W2743261605 hasConceptScore W2743261605C134306372 @default.
- W2743261605 hasConceptScore W2743261605C13944312 @default.
- W2743261605 hasConceptScore W2743261605C141513077 @default.
- W2743261605 hasConceptScore W2743261605C154945302 @default.
- W2743261605 hasConceptScore W2743261605C158693339 @default.
- W2743261605 hasConceptScore W2743261605C163716315 @default.
- W2743261605 hasConceptScore W2743261605C199360897 @default.
- W2743261605 hasConceptScore W2743261605C2779843651 @default.
- W2743261605 hasConceptScore W2743261605C2781089630 @default.
- W2743261605 hasConceptScore W2743261605C33923547 @default.
- W2743261605 hasConceptScore W2743261605C41008148 @default.
- W2743261605 hasConceptScore W2743261605C4199805 @default.
- W2743261605 hasConceptScore W2743261605C62520636 @default.
- W2743261605 hasConceptScore W2743261605C64812099 @default.
- W2743261605 hasConceptScore W2743261605C6802819 @default.
- W2743261605 hasConceptScore W2743261605C99498987 @default.
- W2743261605 hasIssue "12" @default.
- W2743261605 hasLocation W27432616051 @default.
- W2743261605 hasLocation W27432616052 @default.
- W2743261605 hasLocation W27432616053 @default.
- W2743261605 hasLocation W27432616054 @default.
- W2743261605 hasLocation W27432616055 @default.
- W2743261605 hasOpenAccess W2743261605 @default.
- W2743261605 hasPrimaryLocation W27432616051 @default.
- W2743261605 hasRelatedWork W1986868580 @default.
- W2743261605 hasRelatedWork W2019714029 @default.
- W2743261605 hasRelatedWork W2049353827 @default.
- W2743261605 hasRelatedWork W2050624424 @default.
- W2743261605 hasRelatedWork W2061197393 @default.
- W2743261605 hasRelatedWork W2170563869 @default.