Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743262308> ?p ?o ?g. }
- W2743262308 endingPage "2221" @default.
- W2743262308 startingPage "2203" @default.
- W2743262308 abstract "Binding free energy calculations that make use of alchemical pathways are becoming increasingly feasible thanks to advances in hardware and algorithms. Although relative binding free energy (RBFE) calculations are starting to find widespread use, absolute binding free energy (ABFE) calculations are still being explored mainly in academic settings due to the high computational requirements and still uncertain predictive value. However, in some drug design scenarios, RBFE calculations are not applicable and ABFE calculations could provide an alternative. Computationally cheaper end-point calculations in implicit solvent, such as molecular mechanics Poisson-Boltzmann surface area (MMPBSA) calculations, could too be used if one is primarily interested in a relative ranking of affinities. Here, we compare MMPBSA calculations to previously performed absolute alchemical free energy calculations in their ability to correlate with experimental binding free energies for three sets of bromodomain-inhibitor pairs. Different MMPBSA approaches have been considered, including a standard single-trajectory protocol, a protocol that includes a binding entropy estimate, and protocols that take into account the ligand hydration shell. Despite the improvements observed with the latter two MMPBSA approaches, ABFE calculations were found to be overall superior in obtaining correlation with experimental affinities for the test cases considered. A difference in weighted average Pearson ([Formula: see text]) and Spearman ([Formula: see text]) correlations of 0.25 and 0.31 was observed when using a standard single-trajectory MMPBSA setup ([Formula: see text] = 0.64 and [Formula: see text] = 0.66 for ABFE; [Formula: see text] = 0.39 and [Formula: see text] = 0.35 for MMPBSA). The best performing MMPBSA protocols returned weighted average Pearson and Spearman correlations that were about 0.1 inferior to ABFE calculations: [Formula: see text] = 0.55 and [Formula: see text] = 0.56 when including an entropy estimate, and [Formula: see text] = 0.53 and [Formula: see text] = 0.55 when including explicit water molecules. Overall, the study suggests that ABFE calculations are indeed the more accurate approach, yet there is also value in MMPBSA calculations considering the lower compute requirements, and if agreement to experimental affinities in absolute terms is not of interest. Moreover, for the specific protein-ligand systems considered in this study, we find that including an explicit ligand hydration shell or a binding entropy estimate in the MMPBSA calculations resulted in significant performance improvements at a negligible computational cost." @default.
- W2743262308 created "2017-08-17" @default.
- W2743262308 creator A5017132592 @default.
- W2743262308 creator A5034236085 @default.
- W2743262308 creator A5056535696 @default.
- W2743262308 creator A5076551706 @default.
- W2743262308 date "2017-08-24" @default.
- W2743262308 modified "2023-10-12" @default.
- W2743262308 title "Statistical Analysis on the Performance of Molecular Mechanics Poisson–Boltzmann Surface Area versus Absolute Binding Free Energy Calculations: Bromodomains as a Case Study" @default.
- W2743262308 cites W1031578623 @default.
- W2743262308 cites W1553864921 @default.
- W2743262308 cites W1556106311 @default.
- W2743262308 cites W1965762256 @default.
- W2743262308 cites W1966078827 @default.
- W2743262308 cites W1969046853 @default.
- W2743262308 cites W1969873373 @default.
- W2743262308 cites W1975580333 @default.
- W2743262308 cites W1977234725 @default.
- W2743262308 cites W1978330227 @default.
- W2743262308 cites W1978393297 @default.
- W2743262308 cites W1981190811 @default.
- W2743262308 cites W1984347834 @default.
- W2743262308 cites W1995807192 @default.
- W2743262308 cites W1995945562 @default.
- W2743262308 cites W2001996470 @default.
- W2743262308 cites W2004124673 @default.
- W2743262308 cites W2004676220 @default.
- W2743262308 cites W2018633278 @default.
- W2743262308 cites W2024469844 @default.
- W2743262308 cites W2025116694 @default.
- W2743262308 cites W2029582401 @default.
- W2743262308 cites W2034275597 @default.
- W2743262308 cites W2035266068 @default.
- W2743262308 cites W2035687084 @default.
- W2743262308 cites W2039353947 @default.
- W2743262308 cites W2044172327 @default.
- W2743262308 cites W2048214699 @default.
- W2743262308 cites W2058004635 @default.
- W2743262308 cites W2059013803 @default.
- W2743262308 cites W2063061240 @default.
- W2743262308 cites W2064414576 @default.
- W2743262308 cites W2064491099 @default.
- W2743262308 cites W2064867387 @default.
- W2743262308 cites W2068782086 @default.
- W2743262308 cites W2072256473 @default.
- W2743262308 cites W2072604508 @default.
- W2743262308 cites W2072981794 @default.
- W2743262308 cites W2073294374 @default.
- W2743262308 cites W2081693079 @default.
- W2743262308 cites W2082688044 @default.
- W2743262308 cites W2084550263 @default.
- W2743262308 cites W2086675373 @default.
- W2743262308 cites W2095719702 @default.
- W2743262308 cites W2103034037 @default.
- W2743262308 cites W2107572441 @default.
- W2743262308 cites W2110085665 @default.
- W2743262308 cites W2112005274 @default.
- W2743262308 cites W2112855704 @default.
- W2743262308 cites W2117620409 @default.
- W2743262308 cites W2119693903 @default.
- W2743262308 cites W2142868265 @default.
- W2743262308 cites W2146942655 @default.
- W2743262308 cites W2147993766 @default.
- W2743262308 cites W2148893085 @default.
- W2743262308 cites W2154670681 @default.
- W2743262308 cites W2161605421 @default.
- W2743262308 cites W2166765429 @default.
- W2743262308 cites W2170711116 @default.
- W2743262308 cites W2171268876 @default.
- W2743262308 cites W2221713243 @default.
- W2743262308 cites W2233260369 @default.
- W2743262308 cites W2320513108 @default.
- W2743262308 cites W2321484219 @default.
- W2743262308 cites W2323942455 @default.
- W2743262308 cites W2325034207 @default.
- W2743262308 cites W2332764255 @default.
- W2743262308 cites W2404459885 @default.
- W2743262308 cites W2516083692 @default.
- W2743262308 cites W2517518645 @default.
- W2743262308 cites W2560915683 @default.
- W2743262308 cites W2618361354 @default.
- W2743262308 cites W2917394743 @default.
- W2743262308 cites W3026014260 @default.
- W2743262308 cites W4255584963 @default.
- W2743262308 cites W4298872162 @default.
- W2743262308 cites W4371597692 @default.
- W2743262308 doi "https://doi.org/10.1021/acs.jcim.7b00347" @default.
- W2743262308 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5615372" @default.
- W2743262308 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28786670" @default.
- W2743262308 hasPublicationYear "2017" @default.
- W2743262308 type Work @default.
- W2743262308 sameAs 2743262308 @default.
- W2743262308 citedByCount "92" @default.
- W2743262308 countsByYear W27432623082018 @default.
- W2743262308 countsByYear W27432623082019 @default.
- W2743262308 countsByYear W27432623082020 @default.
- W2743262308 countsByYear W27432623082021 @default.
- W2743262308 countsByYear W27432623082022 @default.