Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743265561> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2743265561 endingPage "188" @default.
- W2743265561 startingPage "169" @default.
- W2743265561 abstract "The importance of the Global Positioning System (GPS) and related electronic systems continues to increase in a range of environmental, engineering and navigation applications. However, civilian GPS signals are vulnerable to Radio Frequency (RF) interference. Spoofing is an intentional intervention that aims to force a GPS receiver to acquire and track invalid navigation data. Analysis of spoofing and authentic signal patterns represents the differences as phase, energy and imaginary components of the signal. In this paper, early-late phase, delta, and signal level as the three main features are extracted from the correlation output of the tracking loop. Using these features, spoofing detection can be performed by exploiting conventional machine learning algorithms such as K-Nearest Neighbourhood (KNN) and naive Bayesian classifier. A Neural Network (NN) as a learning machine is a modern computational method for collecting the required knowledge and predicting the output values in complicated systems. This paper presents a new approach for GPS spoofing detection based on multi-layer NN whose inputs are indices of features. Simulation results on a software GPS receiver showed adequate detection accuracy was obtained from NN with a short detection time." @default.
- W2743265561 created "2017-08-17" @default.
- W2743265561 creator A5031268655 @default.
- W2743265561 creator A5051565697 @default.
- W2743265561 creator A5079873978 @default.
- W2743265561 date "2017-08-14" @default.
- W2743265561 modified "2023-09-30" @default.
- W2743265561 title "Detection of Spoofing Attack using Machine Learning based on Multi-Layer Neural Network in Single-Frequency GPS Receivers" @default.
- W2743265561 cites W1557560302 @default.
- W2743265561 cites W1997426533 @default.
- W2743265561 cites W2001833923 @default.
- W2743265561 cites W2020208320 @default.
- W2743265561 cites W2020800256 @default.
- W2743265561 cites W2021230337 @default.
- W2743265561 cites W2026703770 @default.
- W2743265561 cites W2067620117 @default.
- W2743265561 cites W2139721172 @default.
- W2743265561 cites W2334097005 @default.
- W2743265561 cites W3104887532 @default.
- W2743265561 doi "https://doi.org/10.1017/s0373463317000558" @default.
- W2743265561 hasPublicationYear "2017" @default.
- W2743265561 type Work @default.
- W2743265561 sameAs 2743265561 @default.
- W2743265561 citedByCount "55" @default.
- W2743265561 countsByYear W27432655612018 @default.
- W2743265561 countsByYear W27432655612019 @default.
- W2743265561 countsByYear W27432655612020 @default.
- W2743265561 countsByYear W27432655612021 @default.
- W2743265561 countsByYear W27432655612022 @default.
- W2743265561 countsByYear W27432655612023 @default.
- W2743265561 crossrefType "journal-article" @default.
- W2743265561 hasAuthorship W2743265561A5031268655 @default.
- W2743265561 hasAuthorship W2743265561A5051565697 @default.
- W2743265561 hasAuthorship W2743265561A5079873978 @default.
- W2743265561 hasConcept C12957241 @default.
- W2743265561 hasConcept C14279187 @default.
- W2743265561 hasConcept C153180895 @default.
- W2743265561 hasConcept C154945302 @default.
- W2743265561 hasConcept C167900197 @default.
- W2743265561 hasConcept C198613851 @default.
- W2743265561 hasConcept C31258907 @default.
- W2743265561 hasConcept C41008148 @default.
- W2743265561 hasConcept C50644808 @default.
- W2743265561 hasConcept C60229501 @default.
- W2743265561 hasConcept C76155785 @default.
- W2743265561 hasConcept C79403827 @default.
- W2743265561 hasConceptScore W2743265561C12957241 @default.
- W2743265561 hasConceptScore W2743265561C14279187 @default.
- W2743265561 hasConceptScore W2743265561C153180895 @default.
- W2743265561 hasConceptScore W2743265561C154945302 @default.
- W2743265561 hasConceptScore W2743265561C167900197 @default.
- W2743265561 hasConceptScore W2743265561C198613851 @default.
- W2743265561 hasConceptScore W2743265561C31258907 @default.
- W2743265561 hasConceptScore W2743265561C41008148 @default.
- W2743265561 hasConceptScore W2743265561C50644808 @default.
- W2743265561 hasConceptScore W2743265561C60229501 @default.
- W2743265561 hasConceptScore W2743265561C76155785 @default.
- W2743265561 hasConceptScore W2743265561C79403827 @default.
- W2743265561 hasIssue "1" @default.
- W2743265561 hasLocation W27432655611 @default.
- W2743265561 hasOpenAccess W2743265561 @default.
- W2743265561 hasPrimaryLocation W27432655611 @default.
- W2743265561 hasRelatedWork W2945504560 @default.
- W2743265561 hasRelatedWork W2967044743 @default.
- W2743265561 hasRelatedWork W3037592474 @default.
- W2743265561 hasRelatedWork W3044610859 @default.
- W2743265561 hasRelatedWork W3119463055 @default.
- W2743265561 hasRelatedWork W3134269199 @default.
- W2743265561 hasRelatedWork W3157053299 @default.
- W2743265561 hasRelatedWork W4205799719 @default.
- W2743265561 hasRelatedWork W4207073992 @default.
- W2743265561 hasRelatedWork W784127823 @default.
- W2743265561 hasVolume "71" @default.
- W2743265561 isParatext "false" @default.
- W2743265561 isRetracted "false" @default.
- W2743265561 magId "2743265561" @default.
- W2743265561 workType "article" @default.