Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743269518> ?p ?o ?g. }
- W2743269518 endingPage "1101" @default.
- W2743269518 startingPage "1092" @default.
- W2743269518 abstract "Rationale: Machine learning may be useful to characterize cardiovascular risk, predict outcomes, and identify biomarkers in population studies. Objective: To test the ability of random survival forests, a machine learning technique, to predict 6 cardiovascular outcomes in comparison to standard cardiovascular risk scores. Methods and Results: We included participants from the MESA (Multi-Ethnic Study of Atherosclerosis). Baseline measurements were used to predict cardiovascular outcomes over 12 years of follow-up. MESA was designed to study progression of subclinical disease to cardiovascular events where participants were initially free of cardiovascular disease. All 6814 participants from MESA, aged 45 to 84 years, from 4 ethnicities, and 6 centers across the United States were included. Seven-hundred thirty-five variables from imaging and noninvasive tests, questionnaires, and biomarker panels were obtained. We used the random survival forests technique to identify the top-20 predictors of each outcome. Imaging, electrocardiography, and serum biomarkers featured heavily on the top-20 lists as opposed to traditional cardiovascular risk factors. Age was the most important predictor for all-cause mortality. Fasting glucose levels and carotid ultrasonography measures were important predictors of stroke. Coronary Artery Calcium score was the most important predictor of coronary heart disease and all atherosclerotic cardiovascular disease combined outcomes. Left ventricular structure and function and cardiac troponin-T were among the top predictors for incident heart failure. Creatinine, age, and ankle-brachial index were among the top predictors of atrial fibrillation. TNF-α (tissue necrosis factor-α) and IL (interleukin)-2 soluble receptors and NT-proBNP (N-Terminal Pro-B-Type Natriuretic Peptide) levels were important across all outcomes. The random survival forests technique performed better than established risk scores with increased prediction accuracy (decreased Brier score by 10%–25%). Conclusions: Machine learning in conjunction with deep phenotyping improves prediction accuracy in cardiovascular event prediction in an initially asymptomatic population. These methods may lead to greater insights on subclinical disease markers without apriori assumptions of causality. Clinical Trial Registration: URL: http://www.clinicaltrials.gov . Unique identifier: NCT00005487." @default.
- W2743269518 created "2017-08-17" @default.
- W2743269518 creator A5007236534 @default.
- W2743269518 creator A5008737362 @default.
- W2743269518 creator A5009602028 @default.
- W2743269518 creator A5020348286 @default.
- W2743269518 creator A5038689387 @default.
- W2743269518 creator A5060820801 @default.
- W2743269518 creator A5061035625 @default.
- W2743269518 creator A5064977813 @default.
- W2743269518 creator A5071291933 @default.
- W2743269518 creator A5075061959 @default.
- W2743269518 creator A5079533727 @default.
- W2743269518 creator A5089812930 @default.
- W2743269518 date "2017-10-13" @default.
- W2743269518 modified "2023-10-15" @default.
- W2743269518 title "Cardiovascular Event Prediction by Machine Learning" @default.
- W2743269518 cites W1524016307 @default.
- W2743269518 cites W1809577636 @default.
- W2743269518 cites W1980177930 @default.
- W2743269518 cites W2001982254 @default.
- W2743269518 cites W2032388524 @default.
- W2743269518 cites W2032991527 @default.
- W2743269518 cites W2044702943 @default.
- W2743269518 cites W2051512233 @default.
- W2743269518 cites W2073241381 @default.
- W2743269518 cites W2078825462 @default.
- W2743269518 cites W2084139018 @default.
- W2743269518 cites W2091139514 @default.
- W2743269518 cites W2096750582 @default.
- W2743269518 cites W2098409133 @default.
- W2743269518 cites W2105577829 @default.
- W2743269518 cites W2120547270 @default.
- W2743269518 cites W2140257708 @default.
- W2743269518 cites W2148092884 @default.
- W2743269518 cites W2149199519 @default.
- W2743269518 cites W2149264003 @default.
- W2743269518 cites W2156097706 @default.
- W2743269518 cites W2158777221 @default.
- W2743269518 cites W2161097104 @default.
- W2743269518 cites W2163697531 @default.
- W2743269518 cites W2164434252 @default.
- W2743269518 cites W2168536722 @default.
- W2743269518 cites W2177870565 @default.
- W2743269518 cites W3099478002 @default.
- W2743269518 cites W92742077 @default.
- W2743269518 doi "https://doi.org/10.1161/circresaha.117.311312" @default.
- W2743269518 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5640485" @default.
- W2743269518 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28794054" @default.
- W2743269518 hasPublicationYear "2017" @default.
- W2743269518 type Work @default.
- W2743269518 sameAs 2743269518 @default.
- W2743269518 citedByCount "365" @default.
- W2743269518 countsByYear W27432695182017 @default.
- W2743269518 countsByYear W27432695182018 @default.
- W2743269518 countsByYear W27432695182019 @default.
- W2743269518 countsByYear W27432695182020 @default.
- W2743269518 countsByYear W27432695182021 @default.
- W2743269518 countsByYear W27432695182022 @default.
- W2743269518 countsByYear W27432695182023 @default.
- W2743269518 crossrefType "journal-article" @default.
- W2743269518 hasAuthorship W2743269518A5007236534 @default.
- W2743269518 hasAuthorship W2743269518A5008737362 @default.
- W2743269518 hasAuthorship W2743269518A5009602028 @default.
- W2743269518 hasAuthorship W2743269518A5020348286 @default.
- W2743269518 hasAuthorship W2743269518A5038689387 @default.
- W2743269518 hasAuthorship W2743269518A5060820801 @default.
- W2743269518 hasAuthorship W2743269518A5061035625 @default.
- W2743269518 hasAuthorship W2743269518A5064977813 @default.
- W2743269518 hasAuthorship W2743269518A5071291933 @default.
- W2743269518 hasAuthorship W2743269518A5075061959 @default.
- W2743269518 hasAuthorship W2743269518A5079533727 @default.
- W2743269518 hasAuthorship W2743269518A5089812930 @default.
- W2743269518 hasBestOaLocation W27432695181 @default.
- W2743269518 hasConcept C113280763 @default.
- W2743269518 hasConcept C11783203 @default.
- W2743269518 hasConcept C126322002 @default.
- W2743269518 hasConcept C127413603 @default.
- W2743269518 hasConcept C164705383 @default.
- W2743269518 hasConcept C185592680 @default.
- W2743269518 hasConcept C2778198053 @default.
- W2743269518 hasConcept C2778213512 @default.
- W2743269518 hasConcept C2779134260 @default.
- W2743269518 hasConcept C2779161974 @default.
- W2743269518 hasConcept C2780645631 @default.
- W2743269518 hasConcept C2781197716 @default.
- W2743269518 hasConcept C2908647359 @default.
- W2743269518 hasConcept C500558357 @default.
- W2743269518 hasConcept C55493867 @default.
- W2743269518 hasConcept C71924100 @default.
- W2743269518 hasConcept C78519656 @default.
- W2743269518 hasConcept C99454951 @default.
- W2743269518 hasConceptScore W2743269518C113280763 @default.
- W2743269518 hasConceptScore W2743269518C11783203 @default.
- W2743269518 hasConceptScore W2743269518C126322002 @default.
- W2743269518 hasConceptScore W2743269518C127413603 @default.
- W2743269518 hasConceptScore W2743269518C164705383 @default.
- W2743269518 hasConceptScore W2743269518C185592680 @default.