Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743269660> ?p ?o ?g. }
- W2743269660 abstract "Latent factor (LF)-based models have been proven to be efficient in implementing recommender systems, owing to their ability to well represent high-dimensional and sparse matrices. While prior works focus on boosting both the prediction accuracy and computation efficiency of original LF model by adding linear biases to it, the individual and combinational effects by linear biases in such performance gain remains unclear. To address this issue, this work thoroughly investigates the effect of prior linear biases and training linear biases. We have investigated the parameter update rules and training processes of an LF model with different combinations of linear biases. Empirical validations are conducted on a high dimensional and sparse matrix from industrial systems currently in use. The results show that each linear bias does have positive/negative effects in the performance of an LF model. Such effects are partially data dependent; however, some linear biases like the global average can bring stable performance gain into an LF model. The theoretical and empirical results along with analysis provide guidance in designing the bias scheme in an LF model for recommender systems." @default.
- W2743269660 created "2017-08-17" @default.
- W2743269660 creator A5062440909 @default.
- W2743269660 creator A5064087585 @default.
- W2743269660 creator A5088955392 @default.
- W2743269660 creator A5091667639 @default.
- W2743269660 date "2017-05-01" @default.
- W2743269660 modified "2023-09-24" @default.
- W2743269660 title "Effect of linear biases in latent factor models on high-dimensional and sparse matrices from recommender systems" @default.
- W2743269660 cites W1492095519 @default.
- W2743269660 cites W1804250401 @default.
- W2743269660 cites W1822331668 @default.
- W2743269660 cites W1850494429 @default.
- W2743269660 cites W1971040550 @default.
- W2743269660 cites W1981972832 @default.
- W2743269660 cites W1982957931 @default.
- W2743269660 cites W1994389483 @default.
- W2743269660 cites W2005156851 @default.
- W2743269660 cites W2014124897 @default.
- W2743269660 cites W2018577223 @default.
- W2743269660 cites W2039938111 @default.
- W2743269660 cites W2040262586 @default.
- W2743269660 cites W2042281163 @default.
- W2743269660 cites W2043403353 @default.
- W2743269660 cites W2045663397 @default.
- W2743269660 cites W2049455633 @default.
- W2743269660 cites W2050360441 @default.
- W2743269660 cites W2054141820 @default.
- W2743269660 cites W2056398894 @default.
- W2743269660 cites W2060731692 @default.
- W2743269660 cites W2065088983 @default.
- W2743269660 cites W2089026157 @default.
- W2743269660 cites W2089684487 @default.
- W2743269660 cites W2109193355 @default.
- W2743269660 cites W2113802117 @default.
- W2743269660 cites W2119523409 @default.
- W2743269660 cites W2122090912 @default.
- W2743269660 cites W2137245235 @default.
- W2743269660 cites W2138459461 @default.
- W2743269660 cites W2149409084 @default.
- W2743269660 cites W2171960770 @default.
- W2743269660 cites W2198041540 @default.
- W2743269660 cites W2277129084 @default.
- W2743269660 cites W2278138779 @default.
- W2743269660 cites W2291041537 @default.
- W2743269660 cites W2312563515 @default.
- W2743269660 cites W2337334204 @default.
- W2743269660 cites W2343036750 @default.
- W2743269660 cites W2385539949 @default.
- W2743269660 cites W2390938437 @default.
- W2743269660 cites W2412011606 @default.
- W2743269660 doi "https://doi.org/10.1109/icnsc.2017.8000141" @default.
- W2743269660 hasPublicationYear "2017" @default.
- W2743269660 type Work @default.
- W2743269660 sameAs 2743269660 @default.
- W2743269660 citedByCount "1" @default.
- W2743269660 countsByYear W27432696602021 @default.
- W2743269660 crossrefType "proceedings-article" @default.
- W2743269660 hasAuthorship W2743269660A5062440909 @default.
- W2743269660 hasAuthorship W2743269660A5064087585 @default.
- W2743269660 hasAuthorship W2743269660A5088955392 @default.
- W2743269660 hasAuthorship W2743269660A5091667639 @default.
- W2743269660 hasConcept C11413529 @default.
- W2743269660 hasConcept C119857082 @default.
- W2743269660 hasConcept C121332964 @default.
- W2743269660 hasConcept C134306372 @default.
- W2743269660 hasConcept C154945302 @default.
- W2743269660 hasConcept C163175372 @default.
- W2743269660 hasConcept C163716315 @default.
- W2743269660 hasConcept C33923547 @default.
- W2743269660 hasConcept C41008148 @default.
- W2743269660 hasConcept C45374587 @default.
- W2743269660 hasConcept C46686674 @default.
- W2743269660 hasConcept C557471498 @default.
- W2743269660 hasConcept C56372850 @default.
- W2743269660 hasConcept C62520636 @default.
- W2743269660 hasConcept C6802819 @default.
- W2743269660 hasConceptScore W2743269660C11413529 @default.
- W2743269660 hasConceptScore W2743269660C119857082 @default.
- W2743269660 hasConceptScore W2743269660C121332964 @default.
- W2743269660 hasConceptScore W2743269660C134306372 @default.
- W2743269660 hasConceptScore W2743269660C154945302 @default.
- W2743269660 hasConceptScore W2743269660C163175372 @default.
- W2743269660 hasConceptScore W2743269660C163716315 @default.
- W2743269660 hasConceptScore W2743269660C33923547 @default.
- W2743269660 hasConceptScore W2743269660C41008148 @default.
- W2743269660 hasConceptScore W2743269660C45374587 @default.
- W2743269660 hasConceptScore W2743269660C46686674 @default.
- W2743269660 hasConceptScore W2743269660C557471498 @default.
- W2743269660 hasConceptScore W2743269660C56372850 @default.
- W2743269660 hasConceptScore W2743269660C62520636 @default.
- W2743269660 hasConceptScore W2743269660C6802819 @default.
- W2743269660 hasLocation W27432696601 @default.
- W2743269660 hasOpenAccess W2743269660 @default.
- W2743269660 hasPrimaryLocation W27432696601 @default.
- W2743269660 hasRelatedWork W1533547788 @default.
- W2743269660 hasRelatedWork W1884762066 @default.
- W2743269660 hasRelatedWork W1966303235 @default.
- W2743269660 hasRelatedWork W2137678375 @default.
- W2743269660 hasRelatedWork W2573803260 @default.