Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743283820> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2743283820 endingPage "107" @default.
- W2743283820 startingPage "95" @default.
- W2743283820 abstract "Stress is the major problem in the modern society and a reason for at least half of lost working days in European enterprises, but existing stress detectors are not sufficiently convenient for everyday use. One reason is that stress perception and stress manifestation vary a lot between individuals; hence, “one-fits-all-persons” stress detectors usually achieve notably lower accuracies than person-specific methods. The majority of existing approaches to person-specific stress recognition, however, employ fully supervised training, requiring to collect fairly large sets of labelled data from each end user. These sets should contain examples of stresses and normal conditions, and such data collection effort may be tiring for end users. Therefore this work proposes an algorithm to train person-specific stress detectors using only unlabelled data, not necessarily containing examples of stresses. The proposed method, based on Hidden Markov Models with maximum posterior marginal decision rule, was tested using real life data of 28 persons and achieved average stress detection accuracy of 75%, which is similar to the accuracies of state-of-the-art supervised algorithms for real life data." @default.
- W2743283820 created "2017-08-17" @default.
- W2743283820 creator A5031695371 @default.
- W2743283820 creator A5036459117 @default.
- W2743283820 creator A5078157026 @default.
- W2743283820 creator A5080326706 @default.
- W2743283820 creator A5080665552 @default.
- W2743283820 creator A5087400393 @default.
- W2743283820 date "2017-01-01" @default.
- W2743283820 modified "2023-10-16" @default.
- W2743283820 title "Unsupervised Stress Detection Algorithm and Experiments with Real Life Data" @default.
- W2743283820 cites W1500882799 @default.
- W2743283820 cites W1963914022 @default.
- W2743283820 cites W1985541164 @default.
- W2743283820 cites W1987674704 @default.
- W2743283820 cites W2032512569 @default.
- W2743283820 cites W2040963510 @default.
- W2743283820 cites W2074346659 @default.
- W2743283820 cites W2105036571 @default.
- W2743283820 cites W2125838338 @default.
- W2743283820 cites W2151089245 @default.
- W2743283820 cites W2184481998 @default.
- W2743283820 cites W2294840761 @default.
- W2743283820 cites W2313987504 @default.
- W2743283820 cites W2317928159 @default.
- W2743283820 cites W2514896623 @default.
- W2743283820 cites W2520289546 @default.
- W2743283820 cites W3098017922 @default.
- W2743283820 doi "https://doi.org/10.1007/978-3-319-65340-2_9" @default.
- W2743283820 hasPublicationYear "2017" @default.
- W2743283820 type Work @default.
- W2743283820 sameAs 2743283820 @default.
- W2743283820 citedByCount "5" @default.
- W2743283820 countsByYear W27432838202018 @default.
- W2743283820 countsByYear W27432838202019 @default.
- W2743283820 countsByYear W27432838202020 @default.
- W2743283820 crossrefType "book-chapter" @default.
- W2743283820 hasAuthorship W2743283820A5031695371 @default.
- W2743283820 hasAuthorship W2743283820A5036459117 @default.
- W2743283820 hasAuthorship W2743283820A5078157026 @default.
- W2743283820 hasAuthorship W2743283820A5080326706 @default.
- W2743283820 hasAuthorship W2743283820A5080665552 @default.
- W2743283820 hasAuthorship W2743283820A5087400393 @default.
- W2743283820 hasConcept C11413529 @default.
- W2743283820 hasConcept C119857082 @default.
- W2743283820 hasConcept C138885662 @default.
- W2743283820 hasConcept C153180895 @default.
- W2743283820 hasConcept C154945302 @default.
- W2743283820 hasConcept C21036866 @default.
- W2743283820 hasConcept C23224414 @default.
- W2743283820 hasConcept C41008148 @default.
- W2743283820 hasConcept C41895202 @default.
- W2743283820 hasConcept C76155785 @default.
- W2743283820 hasConcept C94915269 @default.
- W2743283820 hasConceptScore W2743283820C11413529 @default.
- W2743283820 hasConceptScore W2743283820C119857082 @default.
- W2743283820 hasConceptScore W2743283820C138885662 @default.
- W2743283820 hasConceptScore W2743283820C153180895 @default.
- W2743283820 hasConceptScore W2743283820C154945302 @default.
- W2743283820 hasConceptScore W2743283820C21036866 @default.
- W2743283820 hasConceptScore W2743283820C23224414 @default.
- W2743283820 hasConceptScore W2743283820C41008148 @default.
- W2743283820 hasConceptScore W2743283820C41895202 @default.
- W2743283820 hasConceptScore W2743283820C76155785 @default.
- W2743283820 hasConceptScore W2743283820C94915269 @default.
- W2743283820 hasLocation W27432838201 @default.
- W2743283820 hasOpenAccess W2743283820 @default.
- W2743283820 hasPrimaryLocation W27432838201 @default.
- W2743283820 hasRelatedWork W2003465964 @default.
- W2743283820 hasRelatedWork W2057623054 @default.
- W2743283820 hasRelatedWork W2317200988 @default.
- W2743283820 hasRelatedWork W2371447506 @default.
- W2743283820 hasRelatedWork W2376932109 @default.
- W2743283820 hasRelatedWork W2386767533 @default.
- W2743283820 hasRelatedWork W2748952813 @default.
- W2743283820 hasRelatedWork W2899084033 @default.
- W2743283820 hasRelatedWork W3107474891 @default.
- W2743283820 hasRelatedWork W4225307033 @default.
- W2743283820 isParatext "false" @default.
- W2743283820 isRetracted "false" @default.
- W2743283820 magId "2743283820" @default.
- W2743283820 workType "book-chapter" @default.