Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743306721> ?p ?o ?g. }
- W2743306721 abstract "According to privatization and deregulation of power system, accurate electric load forecasting has come into prominence recently. The new energy market and the smart grid paradigm ask for both better demand side management policies and for more reliable forecasts from single end-users, up to system scale. However, it is complex to predict the electric demand owing to the influencing factors such as climate factors, social activities, and seasonal factors. The methods developed for load forecasting are broadly analyzed in two categories, namely analytical techniques and artificial intelligence techniques. In the literature, commonly used analytical methods are linear regression method, Box-Jenkins method, and nonparametric regression method. The analytical methods work well under normal daily circumstances, but they can't give contenting results while dealing with meteorological, sociological or economical changes, hence they are not updated depending on time. Therefore, artificial intelligence techniques have gained importance in reducing estimation errors. Artificial neural network, support vector machine, and adaptive neuro-fuzzy inference system are among these artificial intelligence techniques. In this paper, a state-of-the-art review of three artificial intelligence techniques for short-term electric load forecasting is comprehensively presented." @default.
- W2743306721 created "2017-08-17" @default.
- W2743306721 creator A5003456046 @default.
- W2743306721 creator A5058617413 @default.
- W2743306721 creator A5064956800 @default.
- W2743306721 date "2017-06-01" @default.
- W2743306721 modified "2023-10-06" @default.
- W2743306721 title "A state-of-the-art review of artificial intelligence techniques for short-term electric load forecasting" @default.
- W2743306721 cites W1191826283 @default.
- W2743306721 cites W1510073064 @default.
- W2743306721 cites W1511952312 @default.
- W2743306721 cites W1536402948 @default.
- W2743306721 cites W1711412747 @default.
- W2743306721 cites W1908962573 @default.
- W2743306721 cites W1963682480 @default.
- W2743306721 cites W1979817014 @default.
- W2743306721 cites W1991643050 @default.
- W2743306721 cites W2001506129 @default.
- W2743306721 cites W2017561014 @default.
- W2743306721 cites W2019207321 @default.
- W2743306721 cites W2019282798 @default.
- W2743306721 cites W2031754865 @default.
- W2743306721 cites W2040786650 @default.
- W2743306721 cites W2041490648 @default.
- W2743306721 cites W2050801486 @default.
- W2743306721 cites W2056114557 @default.
- W2743306721 cites W2064064730 @default.
- W2743306721 cites W2067847508 @default.
- W2743306721 cites W2068403136 @default.
- W2743306721 cites W2069143585 @default.
- W2743306721 cites W2070666864 @default.
- W2743306721 cites W2075846637 @default.
- W2743306721 cites W2083931742 @default.
- W2743306721 cites W2108826826 @default.
- W2743306721 cites W2113062149 @default.
- W2743306721 cites W2120586739 @default.
- W2743306721 cites W2127192673 @default.
- W2743306721 cites W2130904551 @default.
- W2743306721 cites W2134243500 @default.
- W2743306721 cites W2139073438 @default.
- W2743306721 cites W2141695047 @default.
- W2743306721 cites W2146974330 @default.
- W2743306721 cites W2150783679 @default.
- W2743306721 cites W2152827969 @default.
- W2743306721 cites W2156026941 @default.
- W2743306721 cites W2156654695 @default.
- W2743306721 cites W2156909104 @default.
- W2743306721 cites W2172174166 @default.
- W2743306721 cites W2189919008 @default.
- W2743306721 cites W2202089267 @default.
- W2743306721 cites W2247352014 @default.
- W2743306721 cites W2275088575 @default.
- W2743306721 cites W2291164860 @default.
- W2743306721 cites W2337474653 @default.
- W2743306721 cites W2341910059 @default.
- W2743306721 cites W2477498913 @default.
- W2743306721 cites W2490223215 @default.
- W2743306721 cites W2503000058 @default.
- W2743306721 cites W2522450402 @default.
- W2743306721 cites W2560599441 @default.
- W2743306721 cites W2569241116 @default.
- W2743306721 cites W2571945220 @default.
- W2743306721 cites W2586259521 @default.
- W2743306721 cites W2590925279 @default.
- W2743306721 cites W2764791077 @default.
- W2743306721 doi "https://doi.org/10.1109/iyce.2017.8003734" @default.
- W2743306721 hasPublicationYear "2017" @default.
- W2743306721 type Work @default.
- W2743306721 sameAs 2743306721 @default.
- W2743306721 citedByCount "64" @default.
- W2743306721 countsByYear W27433067212018 @default.
- W2743306721 countsByYear W27433067212019 @default.
- W2743306721 countsByYear W27433067212020 @default.
- W2743306721 countsByYear W27433067212021 @default.
- W2743306721 countsByYear W27433067212022 @default.
- W2743306721 countsByYear W27433067212023 @default.
- W2743306721 crossrefType "proceedings-article" @default.
- W2743306721 hasAuthorship W2743306721A5003456046 @default.
- W2743306721 hasAuthorship W2743306721A5058617413 @default.
- W2743306721 hasAuthorship W2743306721A5064956800 @default.
- W2743306721 hasConcept C10558101 @default.
- W2743306721 hasConcept C119599485 @default.
- W2743306721 hasConcept C119857082 @default.
- W2743306721 hasConcept C121332964 @default.
- W2743306721 hasConcept C127413603 @default.
- W2743306721 hasConcept C13736549 @default.
- W2743306721 hasConcept C154945302 @default.
- W2743306721 hasConcept C163258240 @default.
- W2743306721 hasConcept C165801399 @default.
- W2743306721 hasConcept C193809577 @default.
- W2743306721 hasConcept C2777819126 @default.
- W2743306721 hasConcept C41008148 @default.
- W2743306721 hasConcept C42475967 @default.
- W2743306721 hasConcept C50644808 @default.
- W2743306721 hasConcept C58166 @default.
- W2743306721 hasConcept C61797465 @default.
- W2743306721 hasConcept C62520636 @default.
- W2743306721 hasConcept C77715397 @default.
- W2743306721 hasConcept C89227174 @default.
- W2743306721 hasConceptScore W2743306721C10558101 @default.