Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743608904> ?p ?o ?g. }
- W2743608904 endingPage "813" @default.
- W2743608904 startingPage "806" @default.
- W2743608904 abstract "Biomass estimation plays of crucial role in agriculture and agro-based industries. The macauba, Acrocomia aculeata (Jacq.) Lood., ex Mart., is a palm species that has been a focal point for research and development of an alternative biomass-bioenergy crop for the tropics. The macauba fruit components (exocarp, mesocarp, endocarp and seed/kernel) present different constitutional characteristics and their biomass determination, by traditional methods, is labor-consuming. Therefore, the validation of procedures that can streamline this process is relevant, since it can reduce costs and time for both breeding programs and industries. This study tested the efficacy of Artificial Neural Networks (ANN) on biomass prediction of the macauba fruit components by comparing it to the multiple linear regression method. The data used came from fruits collected in 18 localities, distributed throughout the state of Minas Gerais, Brazil. According to their provenance, the matrices were clustered into two groups with the k-means method for posterior ANN cross-validation. Each group was interchangeably used for both training and validation purposes. The ANN was more efficient than multivariate linear model in the predictions of dry weight of the fruit́s four components and oil content of the mesocarp and seed. As for variables related to dry weight, ANN reached 98% predictive accuracy (i.e., 98% accuracy of the value predicted by the network), and for variables related to oil contents, accuracy was around 90%. Additionally, non-invasive measurements of the fruit (i.e., low-cost and low-time measurement variables) were adequate enough to predict most of the variables of interest. These results show the ANN's prediction potential, saving time and efforts for the consolidation of macauba as a crop." @default.
- W2743608904 created "2017-08-17" @default.
- W2743608904 creator A5018787944 @default.
- W2743608904 creator A5019597143 @default.
- W2743608904 creator A5021687192 @default.
- W2743608904 creator A5054281359 @default.
- W2743608904 creator A5055139115 @default.
- W2743608904 creator A5066560220 @default.
- W2743608904 creator A5066877685 @default.
- W2743608904 date "2017-12-01" @default.
- W2743608904 modified "2023-09-24" @default.
- W2743608904 title "High-performance prediction of macauba fruit biomass for agricultural and industrial purposes using Artificial Neural Networks" @default.
- W2743608904 cites W180836830 @default.
- W2743608904 cites W1990643899 @default.
- W2743608904 cites W1994977660 @default.
- W2743608904 cites W1997334460 @default.
- W2743608904 cites W2001844261 @default.
- W2743608904 cites W2006798645 @default.
- W2743608904 cites W2008467567 @default.
- W2743608904 cites W2029445284 @default.
- W2743608904 cites W2029923651 @default.
- W2743608904 cites W2043622844 @default.
- W2743608904 cites W2054995800 @default.
- W2743608904 cites W2064100699 @default.
- W2743608904 cites W2068277410 @default.
- W2743608904 cites W2112776483 @default.
- W2743608904 cites W2151390377 @default.
- W2743608904 cites W2162280093 @default.
- W2743608904 cites W2163823216 @default.
- W2743608904 cites W2166520913 @default.
- W2743608904 cites W2168957451 @default.
- W2743608904 cites W2210820777 @default.
- W2743608904 cites W2263037746 @default.
- W2743608904 cites W2283762584 @default.
- W2743608904 cites W2291642299 @default.
- W2743608904 cites W2340219915 @default.
- W2743608904 cites W2423107935 @default.
- W2743608904 cites W2460252387 @default.
- W2743608904 cites W2522746967 @default.
- W2743608904 cites W2540771818 @default.
- W2743608904 cites W2586863128 @default.
- W2743608904 doi "https://doi.org/10.1016/j.indcrop.2017.07.031" @default.
- W2743608904 hasPublicationYear "2017" @default.
- W2743608904 type Work @default.
- W2743608904 sameAs 2743608904 @default.
- W2743608904 citedByCount "33" @default.
- W2743608904 countsByYear W27436089042018 @default.
- W2743608904 countsByYear W27436089042019 @default.
- W2743608904 countsByYear W27436089042020 @default.
- W2743608904 countsByYear W27436089042021 @default.
- W2743608904 countsByYear W27436089042022 @default.
- W2743608904 countsByYear W27436089042023 @default.
- W2743608904 crossrefType "journal-article" @default.
- W2743608904 hasAuthorship W2743608904A5018787944 @default.
- W2743608904 hasAuthorship W2743608904A5019597143 @default.
- W2743608904 hasAuthorship W2743608904A5021687192 @default.
- W2743608904 hasAuthorship W2743608904A5054281359 @default.
- W2743608904 hasAuthorship W2743608904A5055139115 @default.
- W2743608904 hasAuthorship W2743608904A5066560220 @default.
- W2743608904 hasAuthorship W2743608904A5066877685 @default.
- W2743608904 hasBestOaLocation W27436089042 @default.
- W2743608904 hasConcept C105795698 @default.
- W2743608904 hasConcept C114614502 @default.
- W2743608904 hasConcept C115540264 @default.
- W2743608904 hasConcept C118518473 @default.
- W2743608904 hasConcept C119857082 @default.
- W2743608904 hasConcept C127413603 @default.
- W2743608904 hasConcept C137580998 @default.
- W2743608904 hasConcept C150903083 @default.
- W2743608904 hasConcept C161584116 @default.
- W2743608904 hasConcept C18903297 @default.
- W2743608904 hasConcept C33923547 @default.
- W2743608904 hasConcept C39432304 @default.
- W2743608904 hasConcept C41008148 @default.
- W2743608904 hasConcept C50644808 @default.
- W2743608904 hasConcept C6557445 @default.
- W2743608904 hasConcept C74193536 @default.
- W2743608904 hasConcept C86803240 @default.
- W2743608904 hasConcept C88463610 @default.
- W2743608904 hasConceptScore W2743608904C105795698 @default.
- W2743608904 hasConceptScore W2743608904C114614502 @default.
- W2743608904 hasConceptScore W2743608904C115540264 @default.
- W2743608904 hasConceptScore W2743608904C118518473 @default.
- W2743608904 hasConceptScore W2743608904C119857082 @default.
- W2743608904 hasConceptScore W2743608904C127413603 @default.
- W2743608904 hasConceptScore W2743608904C137580998 @default.
- W2743608904 hasConceptScore W2743608904C150903083 @default.
- W2743608904 hasConceptScore W2743608904C161584116 @default.
- W2743608904 hasConceptScore W2743608904C18903297 @default.
- W2743608904 hasConceptScore W2743608904C33923547 @default.
- W2743608904 hasConceptScore W2743608904C39432304 @default.
- W2743608904 hasConceptScore W2743608904C41008148 @default.
- W2743608904 hasConceptScore W2743608904C50644808 @default.
- W2743608904 hasConceptScore W2743608904C6557445 @default.
- W2743608904 hasConceptScore W2743608904C74193536 @default.
- W2743608904 hasConceptScore W2743608904C86803240 @default.
- W2743608904 hasConceptScore W2743608904C88463610 @default.
- W2743608904 hasFunder F4320321091 @default.