Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743681856> ?p ?o ?g. }
- W2743681856 endingPage "38" @default.
- W2743681856 startingPage "24" @default.
- W2743681856 abstract "FIB/SEM nanotomography (FIB-nt) is a powerful technique for the determination and quantification of the three-dimensional microstructure in subsurface features. Often times, the microstructure of a sample is the ultimate determiner of the overall performance of a system, and a detailed understanding of its properties is crucial in advancing the materials engineering of a resulting device. While the FIB-nt technique has developed significantly in the 15 years since its introduction, advanced nanotomographic analysis is still far from routine, and a number of challenges remain in data acquisition and post-processing. In this work, we present a number of techniques to improve the quality of the acquired data, together with easy-to-implement methods to obtain “advanced” microstructural quantifications. The techniques are applied to a solid oxide fuel cell cathode of interest to the electrochemistry community, but the methodologies are easily adaptable to a wide range of material systems. Finally, results from an analyzed sample are presented as a practical example of how these techniques can be implemented." @default.
- W2743681856 created "2017-08-17" @default.
- W2743681856 creator A5026590769 @default.
- W2743681856 creator A5047507877 @default.
- W2743681856 creator A5057449525 @default.
- W2743681856 creator A5061314780 @default.
- W2743681856 creator A5075013050 @default.
- W2743681856 date "2018-01-01" @default.
- W2743681856 modified "2023-10-17" @default.
- W2743681856 title "Improving microstructural quantification in FIB/SEM nanotomography" @default.
- W2743681856 cites W1504606302 @default.
- W2743681856 cites W1948685284 @default.
- W2743681856 cites W1964055166 @default.
- W2743681856 cites W1974036018 @default.
- W2743681856 cites W1975888200 @default.
- W2743681856 cites W1991551326 @default.
- W2743681856 cites W1992021211 @default.
- W2743681856 cites W1994440353 @default.
- W2743681856 cites W1995290212 @default.
- W2743681856 cites W1997982009 @default.
- W2743681856 cites W2010779299 @default.
- W2743681856 cites W2011254969 @default.
- W2743681856 cites W2015159529 @default.
- W2743681856 cites W2020743003 @default.
- W2743681856 cites W2024446193 @default.
- W2743681856 cites W2027442105 @default.
- W2743681856 cites W2029189855 @default.
- W2743681856 cites W2034139229 @default.
- W2743681856 cites W2036322673 @default.
- W2743681856 cites W2040994137 @default.
- W2743681856 cites W2041625018 @default.
- W2743681856 cites W2054113582 @default.
- W2743681856 cites W2057376649 @default.
- W2743681856 cites W2059441970 @default.
- W2743681856 cites W2059686954 @default.
- W2743681856 cites W2062562689 @default.
- W2743681856 cites W2063270815 @default.
- W2743681856 cites W2067291138 @default.
- W2743681856 cites W2077184721 @default.
- W2743681856 cites W2078418450 @default.
- W2743681856 cites W2081513982 @default.
- W2743681856 cites W2086021160 @default.
- W2743681856 cites W2094077841 @default.
- W2743681856 cites W2096995263 @default.
- W2743681856 cites W2105901075 @default.
- W2743681856 cites W2106990937 @default.
- W2743681856 cites W2123634595 @default.
- W2743681856 cites W2124260943 @default.
- W2743681856 cites W2131938193 @default.
- W2743681856 cites W2138683088 @default.
- W2743681856 cites W2139679623 @default.
- W2743681856 cites W2146292423 @default.
- W2743681856 cites W2155289247 @default.
- W2743681856 cites W2161001197 @default.
- W2743681856 cites W2166415052 @default.
- W2743681856 cites W2167279371 @default.
- W2743681856 cites W2186905123 @default.
- W2743681856 cites W2236644276 @default.
- W2743681856 cites W2306963986 @default.
- W2743681856 cites W2560642713 @default.
- W2743681856 cites W4206727213 @default.
- W2743681856 doi "https://doi.org/10.1016/j.ultramic.2017.07.017" @default.
- W2743681856 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28841458" @default.
- W2743681856 hasPublicationYear "2018" @default.
- W2743681856 type Work @default.
- W2743681856 sameAs 2743681856 @default.
- W2743681856 citedByCount "38" @default.
- W2743681856 countsByYear W27436818562018 @default.
- W2743681856 countsByYear W27436818562019 @default.
- W2743681856 countsByYear W27436818562020 @default.
- W2743681856 countsByYear W27436818562021 @default.
- W2743681856 countsByYear W27436818562022 @default.
- W2743681856 countsByYear W27436818562023 @default.
- W2743681856 crossrefType "journal-article" @default.
- W2743681856 hasAuthorship W2743681856A5026590769 @default.
- W2743681856 hasAuthorship W2743681856A5047507877 @default.
- W2743681856 hasAuthorship W2743681856A5057449525 @default.
- W2743681856 hasAuthorship W2743681856A5061314780 @default.
- W2743681856 hasAuthorship W2743681856A5075013050 @default.
- W2743681856 hasBestOaLocation W27436818561 @default.
- W2743681856 hasConcept C119599485 @default.
- W2743681856 hasConcept C127413603 @default.
- W2743681856 hasConcept C145148216 @default.
- W2743681856 hasConcept C161866238 @default.
- W2743681856 hasConcept C171250308 @default.
- W2743681856 hasConcept C178790620 @default.
- W2743681856 hasConcept C185592680 @default.
- W2743681856 hasConcept C191897082 @default.
- W2743681856 hasConcept C192562407 @default.
- W2743681856 hasConcept C198531522 @default.
- W2743681856 hasConcept C2778576202 @default.
- W2743681856 hasConcept C41008148 @default.
- W2743681856 hasConcept C43617362 @default.
- W2743681856 hasConcept C49110097 @default.
- W2743681856 hasConcept C87976508 @default.
- W2743681856 hasConceptScore W2743681856C119599485 @default.
- W2743681856 hasConceptScore W2743681856C127413603 @default.
- W2743681856 hasConceptScore W2743681856C145148216 @default.