Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743778626> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2743778626 abstract "Visual grading of timber downgrades wood mechanical properties comparing to machine grading [1]. The most widely recognized grading machines are based on resonance frequency measured from vibratory tests. The prediction of the modulus of elasticity (MOE) can be accurately determined with these vibratory methods [2]. However it is more difficult to predict the modulus of rupture (MOR) especially in the case of low correlation between MOE and MOR. Indeed, this work concerns low grades of French oak for which the coefficient of determination between MOE and MOR equals 0.4. The present paper presents a deeper exploitation of output parameters of vibratory tests in the aim of a better prediction of the MOR. To achieve that, two statistical methods are introduced. The first one is Partial Least Squares (PLS) for which each amplitude of the spectrum is considered as a predictive variable. The same method has been used before for larch species [3] but in this latter work the predict ion s of MOE and MOR depended on board's section and percussion impact. In the present study, these effects have been removed thanks to a normalization of the signal. The second method relies on global output parameters of vibratory tests (Young modulus, shear modulus, density… etc) totaling 31 parameter s. A stepwise regression is applied to reveal the most correlated parameters to observations (MOE or MOR). For a set of 150 oak boards with different sections, the efficiency of models is evaluated through the coefficient of determination between the predictive values and values obtained thanks to four points bending tests (MOE and MOR). To estimate the performance of models, a cross validation technique is used and consists in partitioning the original sample into a calibrating set to set the model, and a validating set to evaluate it. At the end of cross validation, the root mean square of cross validation (RMSECV) is calculated. Table 1 shows a comparison of the two proposed methods and the usual one for MOE and MOR prediction. Stepwise technique improves the prediction of MOE and reduces the error of prediction comparing to a compression vibratory test based only on the first Eigen frequency. PLS is more adequate to predict the MOR and enhance the coefficient of determination from 0.27 to 0.63 and the RMSECV has been reduced by 2 MPa. However, it is difficult to compare PLS and Stepwise methods because their RMSECV is close. These results are being confirmed by a large experimental campaign including 450 boards of French oak. (Resume d'auteur)" @default.
- W2743778626 created "2017-08-17" @default.
- W2743778626 creator A5043733730 @default.
- W2743778626 creator A5054290574 @default.
- W2743778626 creator A5057058251 @default.
- W2743778626 creator A5060942278 @default.
- W2743778626 date "2017-01-01" @default.
- W2743778626 modified "2023-09-22" @default.
- W2743778626 title "Prediction of oak wood mechanical properties based on vibratory tests" @default.
- W2743778626 hasPublicationYear "2017" @default.
- W2743778626 type Work @default.
- W2743778626 sameAs 2743778626 @default.
- W2743778626 citedByCount "0" @default.
- W2743778626 crossrefType "journal-article" @default.
- W2743778626 hasAuthorship W2743778626A5043733730 @default.
- W2743778626 hasAuthorship W2743778626A5054290574 @default.
- W2743778626 hasAuthorship W2743778626A5057058251 @default.
- W2743778626 hasAuthorship W2743778626A5060942278 @default.
- W2743778626 hasConcept C105795698 @default.
- W2743778626 hasConcept C128990827 @default.
- W2743778626 hasConcept C136886441 @default.
- W2743778626 hasConcept C144024400 @default.
- W2743778626 hasConcept C152877465 @default.
- W2743778626 hasConcept C159985019 @default.
- W2743778626 hasConcept C19165224 @default.
- W2743778626 hasConcept C192562407 @default.
- W2743778626 hasConcept C196029304 @default.
- W2743778626 hasConcept C33923547 @default.
- W2743778626 hasConcept C41279357 @default.
- W2743778626 hasConceptScore W2743778626C105795698 @default.
- W2743778626 hasConceptScore W2743778626C128990827 @default.
- W2743778626 hasConceptScore W2743778626C136886441 @default.
- W2743778626 hasConceptScore W2743778626C144024400 @default.
- W2743778626 hasConceptScore W2743778626C152877465 @default.
- W2743778626 hasConceptScore W2743778626C159985019 @default.
- W2743778626 hasConceptScore W2743778626C19165224 @default.
- W2743778626 hasConceptScore W2743778626C192562407 @default.
- W2743778626 hasConceptScore W2743778626C196029304 @default.
- W2743778626 hasConceptScore W2743778626C33923547 @default.
- W2743778626 hasConceptScore W2743778626C41279357 @default.
- W2743778626 hasLocation W27437786261 @default.
- W2743778626 hasOpenAccess W2743778626 @default.
- W2743778626 hasPrimaryLocation W27437786261 @default.
- W2743778626 hasRelatedWork W12498226 @default.
- W2743778626 hasRelatedWork W151188459 @default.
- W2743778626 hasRelatedWork W1878649313 @default.
- W2743778626 hasRelatedWork W1981601683 @default.
- W2743778626 hasRelatedWork W2045589166 @default.
- W2743778626 hasRelatedWork W2052773527 @default.
- W2743778626 hasRelatedWork W2074476131 @default.
- W2743778626 hasRelatedWork W2085030517 @default.
- W2743778626 hasRelatedWork W2161860530 @default.
- W2743778626 hasRelatedWork W2204363735 @default.
- W2743778626 hasRelatedWork W2288309486 @default.
- W2743778626 hasRelatedWork W2378075198 @default.
- W2743778626 hasRelatedWork W2551400760 @default.
- W2743778626 hasRelatedWork W2943973631 @default.
- W2743778626 hasRelatedWork W2962902143 @default.
- W2743778626 hasRelatedWork W3013862877 @default.
- W2743778626 hasRelatedWork W3023030408 @default.
- W2743778626 hasRelatedWork W3158024671 @default.
- W2743778626 hasRelatedWork W3185370318 @default.
- W2743778626 hasRelatedWork W3213182056 @default.
- W2743778626 isParatext "false" @default.
- W2743778626 isRetracted "false" @default.
- W2743778626 magId "2743778626" @default.
- W2743778626 workType "article" @default.