Matches in SemOpenAlex for { <https://semopenalex.org/work/W2744573222> ?p ?o ?g. }
- W2744573222 endingPage "1183" @default.
- W2744573222 startingPage "1175" @default.
- W2744573222 abstract "Wildfires burn an average of 2 million hectares per year in Canada, most of which can be attributed to only a few days of severe fire weather. These “spread days” are often associated with large-scale weather systems. We used extreme threshold values of three Canadian Fire Weather Index System (CFWIS) variables — the fine fuel moisture code (FFMC), initial spread index (ISI), and fire weather index (FWI) — as a proxy for spread days. Then we used self-organizing maps (SOMs) to predict spread days, with sea-level pressure and 500 hPa geopotential height as predictors. SOMs require many input parameters, and we performed an experiment to optimize six key parameters. For each month of the fire season (May–August), we also tested whether SOMs performed better when trained with only one month or with neighbouring months as well. Good performance (AUC of 0.8) was achieved for FFMC and ISI, while nearly good performance was achieved for FWI. To our knowledge, this is the first study to develop a machine-learning model for extreme fire weather that could be deployed in real time." @default.
- W2744573222 created "2017-08-17" @default.
- W2744573222 creator A5015643899 @default.
- W2744573222 creator A5017837598 @default.
- W2744573222 creator A5049789827 @default.
- W2744573222 creator A5089423858 @default.
- W2744573222 date "2017-09-01" @default.
- W2744573222 modified "2023-10-16" @default.
- W2744573222 title "Automated prediction of extreme fire weather from synoptic patterns in northern Alberta, Canada" @default.
- W2744573222 cites W1605323303 @default.
- W2744573222 cites W1966043936 @default.
- W2744573222 cites W1968114652 @default.
- W2744573222 cites W1969601839 @default.
- W2744573222 cites W1970749400 @default.
- W2744573222 cites W1983804570 @default.
- W2744573222 cites W1985570217 @default.
- W2744573222 cites W1985867946 @default.
- W2744573222 cites W1993011813 @default.
- W2744573222 cites W1996624419 @default.
- W2744573222 cites W2004848061 @default.
- W2744573222 cites W2005028768 @default.
- W2744573222 cites W2007114925 @default.
- W2744573222 cites W2009302652 @default.
- W2744573222 cites W2016381774 @default.
- W2744573222 cites W2021576258 @default.
- W2744573222 cites W2022050124 @default.
- W2744573222 cites W2023697203 @default.
- W2744573222 cites W2026415375 @default.
- W2744573222 cites W2046463643 @default.
- W2744573222 cites W2062232301 @default.
- W2744573222 cites W2070390114 @default.
- W2744573222 cites W2076750860 @default.
- W2744573222 cites W2090454671 @default.
- W2744573222 cites W2095924101 @default.
- W2744573222 cites W2105103805 @default.
- W2744573222 cites W2105379395 @default.
- W2744573222 cites W2106963191 @default.
- W2744573222 cites W2118953259 @default.
- W2744573222 cites W2120599362 @default.
- W2744573222 cites W2123328454 @default.
- W2744573222 cites W2132730678 @default.
- W2744573222 cites W2132809245 @default.
- W2744573222 cites W2137133706 @default.
- W2744573222 cites W2148629385 @default.
- W2744573222 cites W2156383806 @default.
- W2744573222 cites W2158410165 @default.
- W2744573222 cites W2165009883 @default.
- W2744573222 cites W2168084509 @default.
- W2744573222 cites W2168338454 @default.
- W2744573222 cites W2170452676 @default.
- W2744573222 cites W2173532158 @default.
- W2744573222 cites W2174012447 @default.
- W2744573222 cites W2180275550 @default.
- W2744573222 cites W2271727995 @default.
- W2744573222 cites W2292922739 @default.
- W2744573222 cites W2337236430 @default.
- W2744573222 cites W2481537189 @default.
- W2744573222 cites W2581034649 @default.
- W2744573222 doi "https://doi.org/10.1139/cjfr-2017-0063" @default.
- W2744573222 hasPublicationYear "2017" @default.
- W2744573222 type Work @default.
- W2744573222 sameAs 2744573222 @default.
- W2744573222 citedByCount "23" @default.
- W2744573222 countsByYear W27445732222018 @default.
- W2744573222 countsByYear W27445732222019 @default.
- W2744573222 countsByYear W27445732222020 @default.
- W2744573222 countsByYear W27445732222021 @default.
- W2744573222 countsByYear W27445732222022 @default.
- W2744573222 countsByYear W27445732222023 @default.
- W2744573222 crossrefType "journal-article" @default.
- W2744573222 hasAuthorship W2744573222A5015643899 @default.
- W2744573222 hasAuthorship W2744573222A5017837598 @default.
- W2744573222 hasAuthorship W2744573222A5049789827 @default.
- W2744573222 hasAuthorship W2744573222A5089423858 @default.
- W2744573222 hasBestOaLocation W27445732221 @default.
- W2744573222 hasConcept C107054158 @default.
- W2744573222 hasConcept C111368507 @default.
- W2744573222 hasConcept C119857082 @default.
- W2744573222 hasConcept C127313418 @default.
- W2744573222 hasConcept C132651083 @default.
- W2744573222 hasConcept C153294291 @default.
- W2744573222 hasConcept C192901106 @default.
- W2744573222 hasConcept C205537798 @default.
- W2744573222 hasConcept C205649164 @default.
- W2744573222 hasConcept C2780148112 @default.
- W2744573222 hasConcept C39432304 @default.
- W2744573222 hasConcept C41008148 @default.
- W2744573222 hasConcept C49204034 @default.
- W2744573222 hasConceptScore W2744573222C107054158 @default.
- W2744573222 hasConceptScore W2744573222C111368507 @default.
- W2744573222 hasConceptScore W2744573222C119857082 @default.
- W2744573222 hasConceptScore W2744573222C127313418 @default.
- W2744573222 hasConceptScore W2744573222C132651083 @default.
- W2744573222 hasConceptScore W2744573222C153294291 @default.
- W2744573222 hasConceptScore W2744573222C192901106 @default.
- W2744573222 hasConceptScore W2744573222C205537798 @default.
- W2744573222 hasConceptScore W2744573222C205649164 @default.
- W2744573222 hasConceptScore W2744573222C2780148112 @default.