Matches in SemOpenAlex for { <https://semopenalex.org/work/W2744802016> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2744802016 abstract "Despite the recent increasing interest in biometric identification using electroencephalogram (EEG) signals, the state of the art still lacks a simple and robust model that is useful in real applications. This work proposes a new approach based on convolutional neural network CNN. The proposed CNN works directly on raw EEG data, thus alleviating the need for engineering features. We investigate the performance of the CNN on datasets of 100 subjects collected from one driving fatigue experiment. Our results show that the CNN model is fast highly efficient in training (<;0.5h on >100K training epochs) and highly robust, achieving 97% accuracy in identifying ~14K testing epochs from 100 subjects with non-time-locked natural driving fatigue data and much higher than from randomly sampled epochs (90%). Overall, this work demonstrates the potential of deep learning solutions for real-life EEG-based biometric identification." @default.
- W2744802016 created "2017-08-17" @default.
- W2744802016 creator A5043588752 @default.
- W2744802016 creator A5057746467 @default.
- W2744802016 creator A5068887242 @default.
- W2744802016 date "2017-05-01" @default.
- W2744802016 modified "2023-10-15" @default.
- W2744802016 title "EEG-based biometric identification with deep learning" @default.
- W2744802016 cites W1525254066 @default.
- W2744802016 cites W1968058591 @default.
- W2744802016 cites W1977228605 @default.
- W2744802016 cites W2008747572 @default.
- W2744802016 cites W2044310907 @default.
- W2744802016 cites W2052493668 @default.
- W2744802016 cites W2150590430 @default.
- W2744802016 cites W2250798172 @default.
- W2744802016 doi "https://doi.org/10.1109/ner.2017.8008425" @default.
- W2744802016 hasPublicationYear "2017" @default.
- W2744802016 type Work @default.
- W2744802016 sameAs 2744802016 @default.
- W2744802016 citedByCount "56" @default.
- W2744802016 countsByYear W27448020162017 @default.
- W2744802016 countsByYear W27448020162018 @default.
- W2744802016 countsByYear W27448020162019 @default.
- W2744802016 countsByYear W27448020162020 @default.
- W2744802016 countsByYear W27448020162021 @default.
- W2744802016 countsByYear W27448020162022 @default.
- W2744802016 countsByYear W27448020162023 @default.
- W2744802016 crossrefType "proceedings-article" @default.
- W2744802016 hasAuthorship W2744802016A5043588752 @default.
- W2744802016 hasAuthorship W2744802016A5057746467 @default.
- W2744802016 hasAuthorship W2744802016A5068887242 @default.
- W2744802016 hasConcept C108583219 @default.
- W2744802016 hasConcept C116834253 @default.
- W2744802016 hasConcept C118552586 @default.
- W2744802016 hasConcept C119857082 @default.
- W2744802016 hasConcept C153180895 @default.
- W2744802016 hasConcept C154945302 @default.
- W2744802016 hasConcept C15744967 @default.
- W2744802016 hasConcept C184297639 @default.
- W2744802016 hasConcept C28490314 @default.
- W2744802016 hasConcept C41008148 @default.
- W2744802016 hasConcept C522805319 @default.
- W2744802016 hasConcept C52622490 @default.
- W2744802016 hasConcept C59822182 @default.
- W2744802016 hasConcept C67186912 @default.
- W2744802016 hasConcept C77088390 @default.
- W2744802016 hasConcept C81363708 @default.
- W2744802016 hasConcept C86803240 @default.
- W2744802016 hasConceptScore W2744802016C108583219 @default.
- W2744802016 hasConceptScore W2744802016C116834253 @default.
- W2744802016 hasConceptScore W2744802016C118552586 @default.
- W2744802016 hasConceptScore W2744802016C119857082 @default.
- W2744802016 hasConceptScore W2744802016C153180895 @default.
- W2744802016 hasConceptScore W2744802016C154945302 @default.
- W2744802016 hasConceptScore W2744802016C15744967 @default.
- W2744802016 hasConceptScore W2744802016C184297639 @default.
- W2744802016 hasConceptScore W2744802016C28490314 @default.
- W2744802016 hasConceptScore W2744802016C41008148 @default.
- W2744802016 hasConceptScore W2744802016C522805319 @default.
- W2744802016 hasConceptScore W2744802016C52622490 @default.
- W2744802016 hasConceptScore W2744802016C59822182 @default.
- W2744802016 hasConceptScore W2744802016C67186912 @default.
- W2744802016 hasConceptScore W2744802016C77088390 @default.
- W2744802016 hasConceptScore W2744802016C81363708 @default.
- W2744802016 hasConceptScore W2744802016C86803240 @default.
- W2744802016 hasLocation W27448020161 @default.
- W2744802016 hasOpenAccess W2744802016 @default.
- W2744802016 hasPrimaryLocation W27448020161 @default.
- W2744802016 hasRelatedWork W1524372968 @default.
- W2744802016 hasRelatedWork W2019582947 @default.
- W2744802016 hasRelatedWork W2032664813 @default.
- W2744802016 hasRelatedWork W2076845124 @default.
- W2744802016 hasRelatedWork W2183964146 @default.
- W2744802016 hasRelatedWork W2379932303 @default.
- W2744802016 hasRelatedWork W3147744369 @default.
- W2744802016 hasRelatedWork W3212688212 @default.
- W2744802016 hasRelatedWork W4241440711 @default.
- W2744802016 hasRelatedWork W4300873085 @default.
- W2744802016 isParatext "false" @default.
- W2744802016 isRetracted "false" @default.
- W2744802016 magId "2744802016" @default.
- W2744802016 workType "article" @default.