Matches in SemOpenAlex for { <https://semopenalex.org/work/W2744984162> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2744984162 abstract "Electromyography is used as a diagnostic tool for detecting different neuromuscular diseases and it is also a research tool for studying kinesiology which is the study of human- and animal-body muscular movements. Electromyography techniques can be employed with the diagnosis of muscular nerve compression and expansion abnormalities and other problems of muscles and nervous systems. An electromyogram (EMG) signal detects the electrical potential activities generated by muscle cells. These cells are activated by electrochemical signals and neurological signals. It is so difficult for the neurophysiologist to distinguish the individual waveforms generated from the muscle. Thus, the classification and feature extraction of the EMG signal becomes highly necessary. The principle of independent component analysis (ICA), fast Fourier transform (FFT) and other methods is used as dimensionality reduction methods of different critical signals extracted from human body. These different existing techniques for analysis of EMG signals have several limitations such as lower recognition rate waveforms, sensitive to continuous training and poor accuracy. In this chapter, the EMG signals are trained using soft computing techniques like adaptive neuro-fuzzy inference system (ANFIS). ANFIS is the hybrid network where fuzzy logic principle is used in neural network. This proposed technique has different advantages for better training of the EMG signals using ANFIS network with a higher reliability and better accuracy. Discrete wavelet transformation (DWT) method is used for feature extraction of the signal." @default.
- W2744984162 created "2017-08-17" @default.
- W2744984162 creator A5026768626 @default.
- W2744984162 creator A5032707613 @default.
- W2744984162 creator A5034508603 @default.
- W2744984162 creator A5035448992 @default.
- W2744984162 date "2017-01-01" @default.
- W2744984162 modified "2023-09-24" @default.
- W2744984162 title "Classification of EMG Signals Using ANFIS for the Detection of Neuromuscular Disorders" @default.
- W2744984162 cites W1877595435 @default.
- W2744984162 cites W1990935673 @default.
- W2744984162 cites W2012439034 @default.
- W2744984162 cites W2015062432 @default.
- W2744984162 cites W2019207321 @default.
- W2744984162 cites W2034678441 @default.
- W2744984162 cites W2087816641 @default.
- W2744984162 cites W2115790233 @default.
- W2744984162 cites W2133321814 @default.
- W2744984162 cites W2158728671 @default.
- W2744984162 cites W2160651671 @default.
- W2744984162 doi "https://doi.org/10.1007/978-981-10-3779-5_8" @default.
- W2744984162 hasPublicationYear "2017" @default.
- W2744984162 type Work @default.
- W2744984162 sameAs 2744984162 @default.
- W2744984162 citedByCount "2" @default.
- W2744984162 countsByYear W27449841622018 @default.
- W2744984162 countsByYear W27449841622022 @default.
- W2744984162 crossrefType "book-chapter" @default.
- W2744984162 hasAuthorship W2744984162A5026768626 @default.
- W2744984162 hasAuthorship W2744984162A5032707613 @default.
- W2744984162 hasAuthorship W2744984162A5034508603 @default.
- W2744984162 hasAuthorship W2744984162A5035448992 @default.
- W2744984162 hasConcept C153180895 @default.
- W2744984162 hasConcept C154945302 @default.
- W2744984162 hasConcept C186108316 @default.
- W2744984162 hasConcept C195975749 @default.
- W2744984162 hasConcept C199360897 @default.
- W2744984162 hasConcept C2777515770 @default.
- W2744984162 hasConcept C2779843651 @default.
- W2744984162 hasConcept C28490314 @default.
- W2744984162 hasConcept C41008148 @default.
- W2744984162 hasConcept C47432892 @default.
- W2744984162 hasConcept C50644808 @default.
- W2744984162 hasConcept C52622490 @default.
- W2744984162 hasConcept C58166 @default.
- W2744984162 hasConcept C71924100 @default.
- W2744984162 hasConcept C99508421 @default.
- W2744984162 hasConceptScore W2744984162C153180895 @default.
- W2744984162 hasConceptScore W2744984162C154945302 @default.
- W2744984162 hasConceptScore W2744984162C186108316 @default.
- W2744984162 hasConceptScore W2744984162C195975749 @default.
- W2744984162 hasConceptScore W2744984162C199360897 @default.
- W2744984162 hasConceptScore W2744984162C2777515770 @default.
- W2744984162 hasConceptScore W2744984162C2779843651 @default.
- W2744984162 hasConceptScore W2744984162C28490314 @default.
- W2744984162 hasConceptScore W2744984162C41008148 @default.
- W2744984162 hasConceptScore W2744984162C47432892 @default.
- W2744984162 hasConceptScore W2744984162C50644808 @default.
- W2744984162 hasConceptScore W2744984162C52622490 @default.
- W2744984162 hasConceptScore W2744984162C58166 @default.
- W2744984162 hasConceptScore W2744984162C71924100 @default.
- W2744984162 hasConceptScore W2744984162C99508421 @default.
- W2744984162 hasLocation W27449841621 @default.
- W2744984162 hasOpenAccess W2744984162 @default.
- W2744984162 hasPrimaryLocation W27449841621 @default.
- W2744984162 hasRelatedWork W2022319257 @default.
- W2744984162 hasRelatedWork W2053207636 @default.
- W2744984162 hasRelatedWork W2056933353 @default.
- W2744984162 hasRelatedWork W2093259400 @default.
- W2744984162 hasRelatedWork W2103693911 @default.
- W2744984162 hasRelatedWork W2108910569 @default.
- W2744984162 hasRelatedWork W2115790233 @default.
- W2744984162 hasRelatedWork W2132851575 @default.
- W2744984162 hasRelatedWork W2147515425 @default.
- W2744984162 hasRelatedWork W2168784785 @default.
- W2744984162 hasRelatedWork W2186809608 @default.
- W2744984162 hasRelatedWork W2372853904 @default.
- W2744984162 hasRelatedWork W2566760469 @default.
- W2744984162 hasRelatedWork W2583473208 @default.
- W2744984162 hasRelatedWork W2734119505 @default.
- W2744984162 hasRelatedWork W2766721438 @default.
- W2744984162 hasRelatedWork W2945979798 @default.
- W2744984162 hasRelatedWork W3082931328 @default.
- W2744984162 hasRelatedWork W3160183749 @default.
- W2744984162 hasRelatedWork W1964921019 @default.
- W2744984162 isParatext "false" @default.
- W2744984162 isRetracted "false" @default.
- W2744984162 magId "2744984162" @default.
- W2744984162 workType "book-chapter" @default.