Matches in SemOpenAlex for { <https://semopenalex.org/work/W2745003183> ?p ?o ?g. }
- W2745003183 endingPage "316" @default.
- W2745003183 startingPage "302" @default.
- W2745003183 abstract "The classical Back-Propagation (BP) scheme with gradient-based optimization in training Artificial Neural Networks (ANNs) suffers from many drawbacks, such as the premature convergence, and the tendency of being trapped in local optimums. Therefore, as an alternative for the BP and gradient-based optimization schemes, various Evolutionary Algorithms (EAs), i.e., Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Simulated Annealing (SA), and Differential Evolution (DE), have gained popularity in the field of ANN weight training. This study applied a new efficient and effective Shuffled Complex Evolutionary Global Optimization Algorithm with Principal Component Analysis – University of California Irvine (SP-UCI) to the weight training process of a three-layer feed-forward ANN. A large-scale numerical comparison is conducted among the SP-UCI-, PSO-, GA-, SA-, and DE-based ANNs on 17 benchmark, complex, and real-world datasets. Results show that SP-UCI-based ANN outperforms other EA-based ANNs in the context of convergence and generalization. Results suggest that the SP-UCI algorithm possesses good potential in support of the weight training of ANN in real-word problems. In addition, the suitability of different kinds of EAs on training ANN is discussed. The large-scale comparison experiments conducted in this paper are fundamental references for selecting proper ANN weight training algorithms in practice." @default.
- W2745003183 created "2017-08-17" @default.
- W2745003183 creator A5005063313 @default.
- W2745003183 creator A5034964982 @default.
- W2745003183 creator A5035006250 @default.
- W2745003183 creator A5041948662 @default.
- W2745003183 creator A5068813412 @default.
- W2745003183 creator A5071637554 @default.
- W2745003183 date "2017-12-01" @default.
- W2745003183 modified "2023-10-18" @default.
- W2745003183 title "An enhanced artificial neural network with a shuffled complex evolutionary global optimization with principal component analysis" @default.
- W2745003183 cites W1490180010 @default.
- W2745003183 cites W1595159159 @default.
- W2745003183 cites W1834484028 @default.
- W2745003183 cites W1969308522 @default.
- W2745003183 cites W1971259134 @default.
- W2745003183 cites W1978626680 @default.
- W2745003183 cites W1982664399 @default.
- W2745003183 cites W1987267431 @default.
- W2745003183 cites W1992030915 @default.
- W2745003183 cites W1995341919 @default.
- W2745003183 cites W1998442441 @default.
- W2745003183 cites W2000532370 @default.
- W2745003183 cites W2022306346 @default.
- W2745003183 cites W2028017445 @default.
- W2745003183 cites W2049358256 @default.
- W2745003183 cites W2067878879 @default.
- W2745003183 cites W2101927907 @default.
- W2745003183 cites W2104893957 @default.
- W2745003183 cites W2115439525 @default.
- W2745003183 cites W2122158843 @default.
- W2745003183 cites W2124290836 @default.
- W2745003183 cites W2132549764 @default.
- W2745003183 cites W2133837084 @default.
- W2745003183 cites W2141551738 @default.
- W2745003183 cites W2151363206 @default.
- W2745003183 cites W2151554678 @default.
- W2745003183 cites W2171074980 @default.
- W2745003183 cites W2257795092 @default.
- W2745003183 cites W2470898428 @default.
- W2745003183 cites W24821413 @default.
- W2745003183 cites W2593080009 @default.
- W2745003183 cites W2766736793 @default.
- W2745003183 doi "https://doi.org/10.1016/j.ins.2017.08.003" @default.
- W2745003183 hasPublicationYear "2017" @default.
- W2745003183 type Work @default.
- W2745003183 sameAs 2745003183 @default.
- W2745003183 citedByCount "81" @default.
- W2745003183 countsByYear W27450031832018 @default.
- W2745003183 countsByYear W27450031832019 @default.
- W2745003183 countsByYear W27450031832020 @default.
- W2745003183 countsByYear W27450031832021 @default.
- W2745003183 countsByYear W27450031832022 @default.
- W2745003183 countsByYear W27450031832023 @default.
- W2745003183 crossrefType "journal-article" @default.
- W2745003183 hasAuthorship W2745003183A5005063313 @default.
- W2745003183 hasAuthorship W2745003183A5034964982 @default.
- W2745003183 hasAuthorship W2745003183A5035006250 @default.
- W2745003183 hasAuthorship W2745003183A5041948662 @default.
- W2745003183 hasAuthorship W2745003183A5068813412 @default.
- W2745003183 hasAuthorship W2745003183A5071637554 @default.
- W2745003183 hasBestOaLocation W27450031831 @default.
- W2745003183 hasConcept C105902424 @default.
- W2745003183 hasConcept C119857082 @default.
- W2745003183 hasConcept C126255220 @default.
- W2745003183 hasConcept C126980161 @default.
- W2745003183 hasConcept C13280743 @default.
- W2745003183 hasConcept C151730666 @default.
- W2745003183 hasConcept C154945302 @default.
- W2745003183 hasConcept C155032097 @default.
- W2745003183 hasConcept C159149176 @default.
- W2745003183 hasConcept C162324750 @default.
- W2745003183 hasConcept C185798385 @default.
- W2745003183 hasConcept C205649164 @default.
- W2745003183 hasConcept C27438332 @default.
- W2745003183 hasConcept C2777303404 @default.
- W2745003183 hasConcept C2779343474 @default.
- W2745003183 hasConcept C33923547 @default.
- W2745003183 hasConcept C41008148 @default.
- W2745003183 hasConcept C50522688 @default.
- W2745003183 hasConcept C50644808 @default.
- W2745003183 hasConcept C74750220 @default.
- W2745003183 hasConcept C85617194 @default.
- W2745003183 hasConcept C86803240 @default.
- W2745003183 hasConceptScore W2745003183C105902424 @default.
- W2745003183 hasConceptScore W2745003183C119857082 @default.
- W2745003183 hasConceptScore W2745003183C126255220 @default.
- W2745003183 hasConceptScore W2745003183C126980161 @default.
- W2745003183 hasConceptScore W2745003183C13280743 @default.
- W2745003183 hasConceptScore W2745003183C151730666 @default.
- W2745003183 hasConceptScore W2745003183C154945302 @default.
- W2745003183 hasConceptScore W2745003183C155032097 @default.
- W2745003183 hasConceptScore W2745003183C159149176 @default.
- W2745003183 hasConceptScore W2745003183C162324750 @default.
- W2745003183 hasConceptScore W2745003183C185798385 @default.
- W2745003183 hasConceptScore W2745003183C205649164 @default.
- W2745003183 hasConceptScore W2745003183C27438332 @default.
- W2745003183 hasConceptScore W2745003183C2777303404 @default.