Matches in SemOpenAlex for { <https://semopenalex.org/work/W2745608347> ?p ?o ?g. }
- W2745608347 abstract "In the present study we investigate the bio-geo-optical boundaries for the possibility to identify dominant phytoplankton groups from hyperspectral ocean color data. A large dataset of simulated remote sensing reflectance spectra, Rrs(λ), was used. The simulation was based on measured inherent optical properties of natural water and measurements of five phytoplankton light absorption spectra representing five major phytoplankton spectral groups. These simulated data, named as C2X data, contain more than 105 different water cases, including cases typical for clearest natural waters as well as for extreme absorbing and extreme scattering waters. For the simulation the used concentrations of chlorophyll a (representing phytoplankton abundance), Chl, are ranging from 0 to 200 mg m-3, concentrations of non-algal particles, NAP, from 0 to 1500 g m-3, and absorption coefficients of chromophoric dissolved organic matter (CDOM) at 440 nm from 0 to 20 m-1. A second, independent, smaller dataset of simulated Rrs(λ) used light absorption spectra of 128 cultures from six phytoplankton taxonomic groups to represent natural variability. Spectra of this test dataset are compared with spectra from the C2X data in order to evaluate to which extent the five spectral groups can be correctly identified as dominant under different optical conditions. The results showed that the identification accuracy is highly subject to the water optical conditions, i.e., contribution of and covariance in Chl, NAP, and CDOM. The identification in the simulated data is generally effective, except for waters with very low contribution by phytoplankton and for waters dominated by NAP, whereas contribution by CDOM plays only a minor role. To verify the applicability of the presented approach for natural waters, a test using in situ Rrs(λ) dataset collected during a cyanobacterial bloom in Lake Taihu (China) is carried out and the approach predicts blue cyanobacteria to be dominant. This fits well with observation of the blue cyanobacteria Microcystis sp. in the lake. This study provides an efficient approach, which can be promisingly applied to hyperspectral sensors, for identifying dominant phytoplankton spectral groups purely based on Rrs(λ) spectra." @default.
- W2745608347 created "2017-08-31" @default.
- W2745608347 creator A5028972996 @default.
- W2745608347 creator A5038431935 @default.
- W2745608347 creator A5065699711 @default.
- W2745608347 creator A5078650817 @default.
- W2745608347 date "2017-08-22" @default.
- W2745608347 modified "2023-10-17" @default.
- W2745608347 title "Phytoplankton Group Identification Using Simulated and In situ Hyperspectral Remote Sensing Reflectance" @default.
- W2745608347 cites W1006483632 @default.
- W2745608347 cites W1063495705 @default.
- W2745608347 cites W1649447126 @default.
- W2745608347 cites W1772504446 @default.
- W2745608347 cites W1977578748 @default.
- W2745608347 cites W1989184566 @default.
- W2745608347 cites W1998484602 @default.
- W2745608347 cites W1999371408 @default.
- W2745608347 cites W2010367463 @default.
- W2745608347 cites W2010727962 @default.
- W2745608347 cites W2011484425 @default.
- W2745608347 cites W2011958389 @default.
- W2745608347 cites W2013849888 @default.
- W2745608347 cites W2020154029 @default.
- W2745608347 cites W2029344439 @default.
- W2745608347 cites W2033495386 @default.
- W2745608347 cites W2037050441 @default.
- W2745608347 cites W2039518289 @default.
- W2745608347 cites W2051332595 @default.
- W2745608347 cites W2058848394 @default.
- W2745608347 cites W2059330250 @default.
- W2745608347 cites W2063983419 @default.
- W2745608347 cites W2067538691 @default.
- W2745608347 cites W2081816269 @default.
- W2745608347 cites W2082714424 @default.
- W2745608347 cites W2085947961 @default.
- W2745608347 cites W2095266012 @default.
- W2745608347 cites W2105150827 @default.
- W2745608347 cites W2106917300 @default.
- W2745608347 cites W2109185702 @default.
- W2745608347 cites W2118953314 @default.
- W2745608347 cites W2122269389 @default.
- W2745608347 cites W2124487369 @default.
- W2745608347 cites W2130918913 @default.
- W2745608347 cites W2137572869 @default.
- W2745608347 cites W2141515878 @default.
- W2745608347 cites W2151659169 @default.
- W2745608347 cites W2155290228 @default.
- W2745608347 cites W2157428052 @default.
- W2745608347 cites W2163149181 @default.
- W2745608347 cites W2166949492 @default.
- W2745608347 cites W2171253589 @default.
- W2745608347 cites W2292246395 @default.
- W2745608347 cites W2296439525 @default.
- W2745608347 cites W2496521214 @default.
- W2745608347 cites W2533633364 @default.
- W2745608347 cites W2546036239 @default.
- W2745608347 cites W2551712374 @default.
- W2745608347 cites W2586186474 @default.
- W2745608347 cites W2589592374 @default.
- W2745608347 cites W2593830823 @default.
- W2745608347 cites W2610967008 @default.
- W2745608347 cites W2613806236 @default.
- W2745608347 cites W327139954 @default.
- W2745608347 cites W4240085222 @default.
- W2745608347 doi "https://doi.org/10.3389/fmars.2017.00272" @default.
- W2745608347 hasPublicationYear "2017" @default.
- W2745608347 type Work @default.
- W2745608347 sameAs 2745608347 @default.
- W2745608347 citedByCount "18" @default.
- W2745608347 countsByYear W27456083472019 @default.
- W2745608347 countsByYear W27456083472020 @default.
- W2745608347 countsByYear W27456083472021 @default.
- W2745608347 countsByYear W27456083472022 @default.
- W2745608347 countsByYear W27456083472023 @default.
- W2745608347 crossrefType "journal-article" @default.
- W2745608347 hasAuthorship W2745608347A5028972996 @default.
- W2745608347 hasAuthorship W2745608347A5038431935 @default.
- W2745608347 hasAuthorship W2745608347A5065699711 @default.
- W2745608347 hasAuthorship W2745608347A5078650817 @default.
- W2745608347 hasBestOaLocation W27456083471 @default.
- W2745608347 hasConcept C107872376 @default.
- W2745608347 hasConcept C111368507 @default.
- W2745608347 hasConcept C120665830 @default.
- W2745608347 hasConcept C121332964 @default.
- W2745608347 hasConcept C125287762 @default.
- W2745608347 hasConcept C127313418 @default.
- W2745608347 hasConcept C1276947 @default.
- W2745608347 hasConcept C135009316 @default.
- W2745608347 hasConcept C142796444 @default.
- W2745608347 hasConcept C159078339 @default.
- W2745608347 hasConcept C185592680 @default.
- W2745608347 hasConcept C18903297 @default.
- W2745608347 hasConcept C19269812 @default.
- W2745608347 hasConcept C197248824 @default.
- W2745608347 hasConcept C2776939893 @default.
- W2745608347 hasConcept C2778902199 @default.
- W2745608347 hasConcept C2780892065 @default.
- W2745608347 hasConcept C36574619 @default.
- W2745608347 hasConcept C39432304 @default.
- W2745608347 hasConcept C55493867 @default.