Matches in SemOpenAlex for { <https://semopenalex.org/work/W2745739893> ?p ?o ?g. }
- W2745739893 abstract "Nowadays, sleep quality is one of the most important measures of healthy life, especially considering the huge number of sleep-related disorders. Identifying sleep stages using polysomnographic (PSG) signals is the traditional way of assessing sleep quality. However, the manual process of sleep stage classification is time-consuming, subjective and costly. Therefore, in order to improve the accuracy and efficiency of the sleep stage classification, researchers have been trying to develop automatic classification algorithms. Automatic sleep stage classification mainly consists of three steps: pre-processing, feature extraction and classification. Since classification accuracy is deeply affected by the extracted features, a poor feature vector will adversely affect the classifier and eventually lead to low classification accuracy. Therefore, special attention should be given to the feature extraction and selection process.In this paper the performance of seven feature selection methods, as well as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG and submental chin EMG recordings of 22 healthy males and females were used. A comprehensive feature set including 49 features was extracted from these recordings. The extracted features are among the most common and effective features used in sleep stage classification from temporal, spectral, entropy-based and nonlinear categories. The feature selection methods were evaluated and compared using three criteria: classification accuracy, stability, and similarity.Simulation results show that MRMR-MID achieves the highest classification performance while Fisher method provides the most stable ranking. In our simulations, the performance of the aggregation methods was in the average level, although they are known to generate more stable results and better accuracy.The Borda and RRA rank aggregation methods could not outperform significantly the conventional feature ranking methods. Among conventional methods, some of them slightly performed better than others, although the choice of a suitable technique is dependent on the computational complexity and accuracy requirements of the user." @default.
- W2745739893 created "2017-08-31" @default.
- W2745739893 creator A5010179430 @default.
- W2745739893 creator A5065297961 @default.
- W2745739893 creator A5068126534 @default.
- W2745739893 date "2017-08-01" @default.
- W2745739893 modified "2023-09-26" @default.
- W2745739893 title "Feature ranking and rank aggregation for automatic sleep stage classification: a comparative study" @default.
- W2745739893 cites W1500895378 @default.
- W2745739893 cites W1586335931 @default.
- W2745739893 cites W1776514298 @default.
- W2745739893 cites W1966406352 @default.
- W2745739893 cites W1972225389 @default.
- W2745739893 cites W1978347377 @default.
- W2745739893 cites W1986488785 @default.
- W2745739893 cites W1988649197 @default.
- W2745739893 cites W1991976434 @default.
- W2745739893 cites W1997659725 @default.
- W2745739893 cites W2001138475 @default.
- W2745739893 cites W2004093153 @default.
- W2745739893 cites W2006524496 @default.
- W2745739893 cites W2014683958 @default.
- W2745739893 cites W2023570227 @default.
- W2745739893 cites W2035479505 @default.
- W2745739893 cites W2035998833 @default.
- W2745739893 cites W2038894244 @default.
- W2745739893 cites W2038971587 @default.
- W2745739893 cites W2043908619 @default.
- W2745739893 cites W2051834357 @default.
- W2745739893 cites W2052292644 @default.
- W2745739893 cites W2054384069 @default.
- W2745739893 cites W2055442583 @default.
- W2745739893 cites W2066089559 @default.
- W2745739893 cites W2068453747 @default.
- W2745739893 cites W2072062726 @default.
- W2745739893 cites W2097749765 @default.
- W2745739893 cites W2107641306 @default.
- W2745739893 cites W2108674095 @default.
- W2745739893 cites W2111335697 @default.
- W2745739893 cites W2123133018 @default.
- W2745739893 cites W2124073655 @default.
- W2745739893 cites W2124644809 @default.
- W2745739893 cites W2127313070 @default.
- W2745739893 cites W2131209034 @default.
- W2745739893 cites W2134050473 @default.
- W2745739893 cites W2146511318 @default.
- W2745739893 cites W2148616726 @default.
- W2745739893 cites W2158585918 @default.
- W2745739893 cites W2161579136 @default.
- W2745739893 cites W2165969461 @default.
- W2745739893 cites W2460450644 @default.
- W2745739893 cites W2787894218 @default.
- W2745739893 doi "https://doi.org/10.1186/s12938-017-0358-3" @default.
- W2745739893 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5568624" @default.
- W2745739893 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28830438" @default.
- W2745739893 hasPublicationYear "2017" @default.
- W2745739893 type Work @default.
- W2745739893 sameAs 2745739893 @default.
- W2745739893 citedByCount "1" @default.
- W2745739893 countsByYear W27457398932018 @default.
- W2745739893 crossrefType "journal-article" @default.
- W2745739893 hasAuthorship W2745739893A5010179430 @default.
- W2745739893 hasAuthorship W2745739893A5065297961 @default.
- W2745739893 hasAuthorship W2745739893A5068126534 @default.
- W2745739893 hasBestOaLocation W27457398931 @default.
- W2745739893 hasConcept C106301342 @default.
- W2745739893 hasConcept C110083411 @default.
- W2745739893 hasConcept C118552586 @default.
- W2745739893 hasConcept C119857082 @default.
- W2745739893 hasConcept C121332964 @default.
- W2745739893 hasConcept C12267149 @default.
- W2745739893 hasConcept C124101348 @default.
- W2745739893 hasConcept C138885662 @default.
- W2745739893 hasConcept C139532973 @default.
- W2745739893 hasConcept C148483581 @default.
- W2745739893 hasConcept C153180895 @default.
- W2745739893 hasConcept C154945302 @default.
- W2745739893 hasConcept C189430467 @default.
- W2745739893 hasConcept C2776401178 @default.
- W2745739893 hasConcept C2778205975 @default.
- W2745739893 hasConcept C2910364982 @default.
- W2745739893 hasConcept C41008148 @default.
- W2745739893 hasConcept C41895202 @default.
- W2745739893 hasConcept C522805319 @default.
- W2745739893 hasConcept C52622490 @default.
- W2745739893 hasConcept C62520636 @default.
- W2745739893 hasConcept C71924100 @default.
- W2745739893 hasConcept C95623464 @default.
- W2745739893 hasConceptScore W2745739893C106301342 @default.
- W2745739893 hasConceptScore W2745739893C110083411 @default.
- W2745739893 hasConceptScore W2745739893C118552586 @default.
- W2745739893 hasConceptScore W2745739893C119857082 @default.
- W2745739893 hasConceptScore W2745739893C121332964 @default.
- W2745739893 hasConceptScore W2745739893C12267149 @default.
- W2745739893 hasConceptScore W2745739893C124101348 @default.
- W2745739893 hasConceptScore W2745739893C138885662 @default.
- W2745739893 hasConceptScore W2745739893C139532973 @default.
- W2745739893 hasConceptScore W2745739893C148483581 @default.
- W2745739893 hasConceptScore W2745739893C153180895 @default.
- W2745739893 hasConceptScore W2745739893C154945302 @default.