Matches in SemOpenAlex for { <https://semopenalex.org/work/W2746142811> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2746142811 endingPage "355" @default.
- W2746142811 startingPage "343" @default.
- W2746142811 abstract "Abstract Bayesian calibration as proposed by Kennedy and O’Hagan [22] has been increasingly applied to building energy models due to its ability to account for the discrepancy between observed values and model predictions. However, its application has been limited to calibration using monthly aggregated data because it is computationally inefficient when the dataset is large. This study focuses on improvements to the current implementation of Bayesian calibration to building energy simulation. This is achieved by: (1) using information theory to select a representative subset of the entire dataset for the calibration, and (2) using a more effective Markov chain Monte Carlo (MCMC) algorithm, the No-U-Turn Sampler (NUTS), which is an extension of Hamiltonian Monte Carlo (HMC) to explore the posterior distribution. The calibrated model was assessed by evaluating both accuracy and convergence. Application of the proposed method is demonstrated using two cases studies: (1) a TRNSYS model of a water-cooled chiller in a mixed-use building in Singapore, and (2) an EnergyPlus model of the cooling system of an office building in Pennsylvania, U.S.A. In both case studies, convergence was achieved for all parameters of the posterior distribution, with Gelman–Rubin statistics R ˆ within 1 ± 0.1. The coefficient of variation of the root mean squared error (CVRMSE) and normalized mean biased error (NMBE) were also within the thresholds set by ASHRAE Guideline 14 [1] ." @default.
- W2746142811 created "2017-08-31" @default.
- W2746142811 creator A5007701465 @default.
- W2746142811 creator A5015586788 @default.
- W2746142811 creator A5025660597 @default.
- W2746142811 creator A5082501969 @default.
- W2746142811 date "2017-11-01" @default.
- W2746142811 modified "2023-10-14" @default.
- W2746142811 title "Bayesian calibration of building energy models with large datasets" @default.
- W2746142811 cites W1965555277 @default.
- W2746142811 cites W1966716558 @default.
- W2746142811 cites W1973333099 @default.
- W2746142811 cites W1990751728 @default.
- W2746142811 cites W1997986440 @default.
- W2746142811 cites W2001259880 @default.
- W2746142811 cites W2020999234 @default.
- W2746142811 cites W2029537703 @default.
- W2746142811 cites W2051979767 @default.
- W2746142811 cites W2056760934 @default.
- W2746142811 cites W2059448777 @default.
- W2746142811 cites W2060157856 @default.
- W2746142811 cites W2081346522 @default.
- W2746142811 cites W2092612581 @default.
- W2746142811 cites W2102710642 @default.
- W2746142811 cites W2141755357 @default.
- W2746142811 cites W2172172920 @default.
- W2746142811 cites W2198875531 @default.
- W2746142811 cites W2345130294 @default.
- W2746142811 cites W2512258641 @default.
- W2746142811 cites W2512816756 @default.
- W2746142811 cites W2533957110 @default.
- W2746142811 cites W4247680473 @default.
- W2746142811 cites W999207820 @default.
- W2746142811 doi "https://doi.org/10.1016/j.enbuild.2017.08.069" @default.
- W2746142811 hasPublicationYear "2017" @default.
- W2746142811 type Work @default.
- W2746142811 sameAs 2746142811 @default.
- W2746142811 citedByCount "84" @default.
- W2746142811 countsByYear W27461428112018 @default.
- W2746142811 countsByYear W27461428112019 @default.
- W2746142811 countsByYear W27461428112020 @default.
- W2746142811 countsByYear W27461428112021 @default.
- W2746142811 countsByYear W27461428112022 @default.
- W2746142811 countsByYear W27461428112023 @default.
- W2746142811 crossrefType "journal-article" @default.
- W2746142811 hasAuthorship W2746142811A5007701465 @default.
- W2746142811 hasAuthorship W2746142811A5015586788 @default.
- W2746142811 hasAuthorship W2746142811A5025660597 @default.
- W2746142811 hasAuthorship W2746142811A5082501969 @default.
- W2746142811 hasBestOaLocation W27461428112 @default.
- W2746142811 hasConcept C105795698 @default.
- W2746142811 hasConcept C107673813 @default.
- W2746142811 hasConcept C154945302 @default.
- W2746142811 hasConcept C160234255 @default.
- W2746142811 hasConcept C165838908 @default.
- W2746142811 hasConcept C186370098 @default.
- W2746142811 hasConcept C2776409380 @default.
- W2746142811 hasConcept C2982928256 @default.
- W2746142811 hasConcept C33923547 @default.
- W2746142811 hasConcept C39432304 @default.
- W2746142811 hasConcept C41008148 @default.
- W2746142811 hasConceptScore W2746142811C105795698 @default.
- W2746142811 hasConceptScore W2746142811C107673813 @default.
- W2746142811 hasConceptScore W2746142811C154945302 @default.
- W2746142811 hasConceptScore W2746142811C160234255 @default.
- W2746142811 hasConceptScore W2746142811C165838908 @default.
- W2746142811 hasConceptScore W2746142811C186370098 @default.
- W2746142811 hasConceptScore W2746142811C2776409380 @default.
- W2746142811 hasConceptScore W2746142811C2982928256 @default.
- W2746142811 hasConceptScore W2746142811C33923547 @default.
- W2746142811 hasConceptScore W2746142811C39432304 @default.
- W2746142811 hasConceptScore W2746142811C41008148 @default.
- W2746142811 hasLocation W27461428111 @default.
- W2746142811 hasLocation W27461428112 @default.
- W2746142811 hasLocation W27461428113 @default.
- W2746142811 hasOpenAccess W2746142811 @default.
- W2746142811 hasPrimaryLocation W27461428111 @default.
- W2746142811 hasRelatedWork W111356826 @default.
- W2746142811 hasRelatedWork W2093167634 @default.
- W2746142811 hasRelatedWork W2325113874 @default.
- W2746142811 hasRelatedWork W2567687373 @default.
- W2746142811 hasRelatedWork W2768511234 @default.
- W2746142811 hasRelatedWork W2944881986 @default.
- W2746142811 hasRelatedWork W3041488498 @default.
- W2746142811 hasRelatedWork W3171196943 @default.
- W2746142811 hasRelatedWork W4255799866 @default.
- W2746142811 hasRelatedWork W4294529810 @default.
- W2746142811 hasVolume "154" @default.
- W2746142811 isParatext "false" @default.
- W2746142811 isRetracted "false" @default.
- W2746142811 magId "2746142811" @default.
- W2746142811 workType "article" @default.