Matches in SemOpenAlex for { <https://semopenalex.org/work/W2746233086> ?p ?o ?g. }
- W2746233086 abstract "Describing the complex dependence structure of extreme phenomena is particularly challenging. To tackle this issue we develop a novel statistical algorithm that describes extremal dependence taking advantage of the inherent hierarchical dependence structure of the max-stable nested logistic distribution and that identifies possible clusters of extreme variables using reversible jump Markov chain Monte Carlo techniques. Parsimonious representations are achieved when clusters of extreme variables are found to be completely independent. Moreover, we significantly decrease the computational complexity of full likelihood inference by deriving a recursive formula for the nested logistic model likelihood. The algorithm performance is verified through extensive simulation experiments which also compare different likelihood procedures. The new methodology is used to investigate the dependence relationships between extreme concentration of multiple pollutants in California and how these pollutants are related to extreme weather conditions. Overall, we show that our approach allows for the representation of complex extremal dependence structures and has valid applications in multivariate data analysis, such as air pollution monitoring, where it can guide policymaking." @default.
- W2746233086 created "2017-08-31" @default.
- W2746233086 creator A5015689834 @default.
- W2746233086 creator A5027166101 @default.
- W2746233086 creator A5059740534 @default.
- W2746233086 creator A5074862331 @default.
- W2746233086 date "2017-05-30" @default.
- W2746233086 modified "2023-09-27" @default.
- W2746233086 title "Bayesian model averaging over tree-based dependence structures for multivariate extremes" @default.
- W2746233086 cites W1495512924 @default.
- W2746233086 cites W1596511688 @default.
- W2746233086 cites W1603903339 @default.
- W2746233086 cites W1792010464 @default.
- W2746233086 cites W1914687022 @default.
- W2746233086 cites W1934366382 @default.
- W2746233086 cites W1964236997 @default.
- W2746233086 cites W1966977153 @default.
- W2746233086 cites W1969273688 @default.
- W2746233086 cites W1978267962 @default.
- W2746233086 cites W1989423543 @default.
- W2746233086 cites W1994672297 @default.
- W2746233086 cites W1994791824 @default.
- W2746233086 cites W2008103017 @default.
- W2746233086 cites W2008421751 @default.
- W2746233086 cites W2015110234 @default.
- W2746233086 cites W2020121419 @default.
- W2746233086 cites W2020729558 @default.
- W2746233086 cites W2029156323 @default.
- W2746233086 cites W2031320937 @default.
- W2746233086 cites W2047030491 @default.
- W2746233086 cites W2048984768 @default.
- W2746233086 cites W2056783205 @default.
- W2746233086 cites W2058959119 @default.
- W2746233086 cites W2058989213 @default.
- W2746233086 cites W2060597638 @default.
- W2746233086 cites W2064474895 @default.
- W2746233086 cites W2067278628 @default.
- W2746233086 cites W2073345881 @default.
- W2746233086 cites W2073416275 @default.
- W2746233086 cites W2074601501 @default.
- W2746233086 cites W2087034140 @default.
- W2746233086 cites W2091363988 @default.
- W2746233086 cites W2096793037 @default.
- W2746233086 cites W2106706098 @default.
- W2746233086 cites W2107439800 @default.
- W2746233086 cites W2110156585 @default.
- W2746233086 cites W2117299503 @default.
- W2746233086 cites W2123834969 @default.
- W2746233086 cites W2137022928 @default.
- W2746233086 cites W2138309709 @default.
- W2746233086 cites W2140951602 @default.
- W2746233086 cites W2147853110 @default.
- W2746233086 cites W2148534890 @default.
- W2746233086 cites W2151832869 @default.
- W2746233086 cites W2158067517 @default.
- W2746233086 cites W2158114082 @default.
- W2746233086 cites W2158687258 @default.
- W2746233086 cites W2158822760 @default.
- W2746233086 cites W2159733436 @default.
- W2746233086 cites W2162986117 @default.
- W2746233086 cites W2166582771 @default.
- W2746233086 cites W2391333480 @default.
- W2746233086 cites W2498455175 @default.
- W2746233086 cites W2521031254 @default.
- W2746233086 cites W2534227598 @default.
- W2746233086 cites W2591776414 @default.
- W2746233086 cites W2598043207 @default.
- W2746233086 cites W2782628446 @default.
- W2746233086 cites W2963933782 @default.
- W2746233086 cites W3102648115 @default.
- W2746233086 cites W3123612175 @default.
- W2746233086 cites W58405484 @default.
- W2746233086 hasPublicationYear "2017" @default.
- W2746233086 type Work @default.
- W2746233086 sameAs 2746233086 @default.
- W2746233086 citedByCount "2" @default.
- W2746233086 countsByYear W27462330862018 @default.
- W2746233086 crossrefType "posted-content" @default.
- W2746233086 hasAuthorship W2746233086A5015689834 @default.
- W2746233086 hasAuthorship W2746233086A5027166101 @default.
- W2746233086 hasAuthorship W2746233086A5059740534 @default.
- W2746233086 hasAuthorship W2746233086A5074862331 @default.
- W2746233086 hasConcept C105795698 @default.
- W2746233086 hasConcept C107673813 @default.
- W2746233086 hasConcept C111350023 @default.
- W2746233086 hasConcept C147581598 @default.
- W2746233086 hasConcept C149782125 @default.
- W2746233086 hasConcept C154945302 @default.
- W2746233086 hasConcept C160234255 @default.
- W2746233086 hasConcept C161584116 @default.
- W2746233086 hasConcept C2776214188 @default.
- W2746233086 hasConcept C2777606061 @default.
- W2746233086 hasConcept C33923547 @default.
- W2746233086 hasConcept C41008148 @default.
- W2746233086 hasConcept C64341305 @default.
- W2746233086 hasConcept C98763669 @default.
- W2746233086 hasConceptScore W2746233086C105795698 @default.
- W2746233086 hasConceptScore W2746233086C107673813 @default.
- W2746233086 hasConceptScore W2746233086C111350023 @default.
- W2746233086 hasConceptScore W2746233086C147581598 @default.