Matches in SemOpenAlex for { <https://semopenalex.org/work/W2746241726> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2746241726 abstract "Association mapping (AM) methods are used in genome-wide association (GWA) studies to test for statistically significant associations between genotypic and phenotypic data. The genotypic and phenotypic data share common evolutionary origins -- namely, the evolutionary history of sampled organisms -- introducing covariance which must be distinguished from the covariance due to biological function that is of primary interest in GWA studies. A variety of methods have been introduced to perform AM while accounting for sample relatedness. However, the state of the art predominantly utilizes the simplifying assumption that sample relatedness is effectively fixed across the genome. In contrast, population genetic theory and empirical studies have shown that sample relatedness can vary greatly across different loci within a genome. This phenomenon -- referred to as local genealogical variation -- is commonly encountered in many genomic datasets. New AM methods are needed to better account for local variation in sample relatedness within genomes. We address this gap by introducing Coal-Miner, a new statistical AM method. The Coal-Miner algorithm takes the form of a methodological pipeline. The initial stages of Coal-Miner seek to detect candidate loci, or loci which contain putatively associated markers. Subsequent stages of Coal-Miner perform test for association using a linear mixed model with multiple effects which account for sample relatedness locally within candidate loci and globally across the entire genome. Using synthetic and empirical datasets, we compare the statistical power and type I error control of Coal-Miner against state-of-the-art AM methods. The simulation conditions reflect a variety of genomic architectures for complex traits and incorporate a range of evolutionary scenarios, each with different evolutionary processes that can generate local genealogical variation. Across the datasets in our study, we find that Coal-Miner consistently offers comparable or typically better statistical power and type I error control compared to the state-of-the-art methods." @default.
- W2746241726 created "2017-08-31" @default.
- W2746241726 creator A5001730410 @default.
- W2746241726 creator A5015509833 @default.
- W2746241726 creator A5024445005 @default.
- W2746241726 creator A5044642735 @default.
- W2746241726 creator A5045922182 @default.
- W2746241726 date "2017-08-20" @default.
- W2746241726 modified "2023-09-24" @default.
- W2746241726 title "Coal-Miner" @default.
- W2746241726 cites W1816932740 @default.
- W2746241726 cites W1978883605 @default.
- W2746241726 cites W1980168725 @default.
- W2746241726 cites W2022293111 @default.
- W2746241726 cites W2037654474 @default.
- W2746241726 cites W2043846803 @default.
- W2746241726 cites W2052395225 @default.
- W2746241726 cites W2052467980 @default.
- W2746241726 cites W2078573208 @default.
- W2746241726 cites W2079416395 @default.
- W2746241726 cites W2088486634 @default.
- W2746241726 cites W2110065044 @default.
- W2746241726 cites W2116652744 @default.
- W2746241726 cites W2124463691 @default.
- W2746241726 cites W2134599124 @default.
- W2746241726 cites W2144267234 @default.
- W2746241726 cites W2144658220 @default.
- W2746241726 cites W2157752701 @default.
- W2746241726 cites W2166984755 @default.
- W2746241726 cites W2319462502 @default.
- W2746241726 cites W2323815667 @default.
- W2746241726 cites W2328176404 @default.
- W2746241726 cites W2419574648 @default.
- W2746241726 cites W2463349984 @default.
- W2746241726 cites W2635531610 @default.
- W2746241726 cites W2949660875 @default.
- W2746241726 doi "https://doi.org/10.1145/3107411.3107490" @default.
- W2746241726 hasPublicationYear "2017" @default.
- W2746241726 type Work @default.
- W2746241726 sameAs 2746241726 @default.
- W2746241726 citedByCount "1" @default.
- W2746241726 countsByYear W27462417262018 @default.
- W2746241726 crossrefType "proceedings-article" @default.
- W2746241726 hasAuthorship W2746241726A5001730410 @default.
- W2746241726 hasAuthorship W2746241726A5015509833 @default.
- W2746241726 hasAuthorship W2746241726A5024445005 @default.
- W2746241726 hasAuthorship W2746241726A5044642735 @default.
- W2746241726 hasAuthorship W2746241726A5045922182 @default.
- W2746241726 hasBestOaLocation W27462417261 @default.
- W2746241726 hasConcept C127413603 @default.
- W2746241726 hasConcept C41008148 @default.
- W2746241726 hasConcept C518851703 @default.
- W2746241726 hasConcept C548081761 @default.
- W2746241726 hasConceptScore W2746241726C127413603 @default.
- W2746241726 hasConceptScore W2746241726C41008148 @default.
- W2746241726 hasConceptScore W2746241726C518851703 @default.
- W2746241726 hasConceptScore W2746241726C548081761 @default.
- W2746241726 hasFunder F4320306076 @default.
- W2746241726 hasLocation W27462417261 @default.
- W2746241726 hasOpenAccess W2746241726 @default.
- W2746241726 hasPrimaryLocation W27462417261 @default.
- W2746241726 hasRelatedWork W2093578348 @default.
- W2746241726 hasRelatedWork W2130043461 @default.
- W2746241726 hasRelatedWork W2350741829 @default.
- W2746241726 hasRelatedWork W2358668433 @default.
- W2746241726 hasRelatedWork W2376932109 @default.
- W2746241726 hasRelatedWork W2382290278 @default.
- W2746241726 hasRelatedWork W2390279801 @default.
- W2746241726 hasRelatedWork W2748952813 @default.
- W2746241726 hasRelatedWork W2899084033 @default.
- W2746241726 hasRelatedWork W3004735627 @default.
- W2746241726 isParatext "false" @default.
- W2746241726 isRetracted "false" @default.
- W2746241726 magId "2746241726" @default.
- W2746241726 workType "article" @default.