Matches in SemOpenAlex for { <https://semopenalex.org/work/W2746336159> ?p ?o ?g. }
- W2746336159 endingPage "e0182299" @default.
- W2746336159 startingPage "e0182299" @default.
- W2746336159 abstract "In order to effectively control and monitor schistosomiasis, new diagnostic methods are essential. Taking advantage of computational approaches provided by immunoinformatics and considering the availability of Schistosoma mansoni predicted proteome information, candidate antigens of schistosomiasis were selected and used in immunodiagnosis tests based on Enzime-linked Immunosorbent Assay (ELISA). The computational selection strategy was based on signal peptide prediction; low similarity to human proteins; B- and T-cell epitope prediction; location and expression in different parasite life stages within definitive host. Results of the above-mentioned analysis were parsed to extract meaningful biological information and loaded into a relational database developed to integrate them. In the end, seven proteins were selected and one B-cell linear epitope from each one of them was selected using B-cell epitope score and the presence of intrinsically disordered regions (IDRs). These predicted epitopes generated synthetic peptides that were used in ELISA assays to validate the rational strategy of in silico selection. ELISA was performed using sera from residents of areas of low endemicity for S. mansoni infection and also from healthy donors (HD), not living in an endemic area for schistosomiasis. Discrimination of negative (NEG) and positive (INF) individuals from endemic areas was performed using parasitological and molecular methods. All infected individuals were treated with praziquantel, and serum samples were obtained from them 30 and 180 days post-treatment (30DPT and 180DPT). Results revealed higher IgG levels in INF group than in HD and NEG groups when peptides 1, 3, 4, 5 and 7 were used. Moreover, using peptide 5, ELISA achieved the best performance, since it could discriminate between individuals living in an endemic area that were actively infected from those that were not (NEG, 30DPT, 180DPT groups). Our experimental results also indicate that the computational prediction approach developed is feasible for identifying promising candidates for the diagnosis of schistosomiasis and other diseases." @default.
- W2746336159 created "2017-08-31" @default.
- W2746336159 creator A5022976564 @default.
- W2746336159 creator A5028854410 @default.
- W2746336159 creator A5032015077 @default.
- W2746336159 creator A5040086734 @default.
- W2746336159 creator A5052090478 @default.
- W2746336159 creator A5071934081 @default.
- W2746336159 creator A5083201210 @default.
- W2746336159 creator A5085607583 @default.
- W2746336159 creator A5091367344 @default.
- W2746336159 date "2017-08-17" @default.
- W2746336159 modified "2023-10-14" @default.
- W2746336159 title "Selecting targets for the diagnosis of Schistosoma mansoni infection: An integrative approach using multi-omic and immunoinformatics data" @default.
- W2746336159 cites W149575366 @default.
- W2746336159 cites W1530858435 @default.
- W2746336159 cites W1561881988 @default.
- W2746336159 cites W1563771469 @default.
- W2746336159 cites W1792685479 @default.
- W2746336159 cites W1963732588 @default.
- W2746336159 cites W1966973062 @default.
- W2746336159 cites W1967724710 @default.
- W2746336159 cites W1968361401 @default.
- W2746336159 cites W1975436890 @default.
- W2746336159 cites W1984202455 @default.
- W2746336159 cites W1986006515 @default.
- W2746336159 cites W1986522398 @default.
- W2746336159 cites W1992581726 @default.
- W2746336159 cites W1997967533 @default.
- W2746336159 cites W2000561697 @default.
- W2746336159 cites W2014216829 @default.
- W2746336159 cites W2014776147 @default.
- W2746336159 cites W2019539444 @default.
- W2746336159 cites W2022033934 @default.
- W2746336159 cites W2022216468 @default.
- W2746336159 cites W2027933108 @default.
- W2746336159 cites W2035014358 @default.
- W2746336159 cites W2038540888 @default.
- W2746336159 cites W2038986837 @default.
- W2746336159 cites W2040776175 @default.
- W2746336159 cites W2046244373 @default.
- W2746336159 cites W2051317628 @default.
- W2746336159 cites W2055043387 @default.
- W2746336159 cites W2055193239 @default.
- W2746336159 cites W2057857666 @default.
- W2746336159 cites W2064153156 @default.
- W2746336159 cites W2065715749 @default.
- W2746336159 cites W2065965757 @default.
- W2746336159 cites W2072392320 @default.
- W2746336159 cites W2074810936 @default.
- W2746336159 cites W2079130575 @default.
- W2746336159 cites W2082355957 @default.
- W2746336159 cites W2094201044 @default.
- W2746336159 cites W2098044013 @default.
- W2746336159 cites W2099025016 @default.
- W2746336159 cites W2114083522 @default.
- W2746336159 cites W2114308326 @default.
- W2746336159 cites W2114328718 @default.
- W2746336159 cites W2120399005 @default.
- W2746336159 cites W2121531412 @default.
- W2746336159 cites W2134098025 @default.
- W2746336159 cites W2134270414 @default.
- W2746336159 cites W2135172417 @default.
- W2746336159 cites W2137958909 @default.
- W2746336159 cites W2138879032 @default.
- W2746336159 cites W2139307306 @default.
- W2746336159 cites W2141621632 @default.
- W2746336159 cites W2143405141 @default.
- W2746336159 cites W2144334749 @default.
- W2746336159 cites W2152014005 @default.
- W2746336159 cites W2152458080 @default.
- W2746336159 cites W2152770371 @default.
- W2746336159 cites W2153533757 @default.
- W2746336159 cites W2158041141 @default.
- W2746336159 cites W2160397907 @default.
- W2746336159 cites W2161199282 @default.
- W2746336159 cites W2168784260 @default.
- W2746336159 cites W2180149190 @default.
- W2746336159 cites W2234649023 @default.
- W2746336159 cites W2353618949 @default.
- W2746336159 cites W2408023187 @default.
- W2746336159 cites W2468808071 @default.
- W2746336159 cites W2566116242 @default.
- W2746336159 cites W4301620003 @default.
- W2746336159 cites W95319942 @default.
- W2746336159 doi "https://doi.org/10.1371/journal.pone.0182299" @default.
- W2746336159 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5560627" @default.
- W2746336159 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28817585" @default.
- W2746336159 hasPublicationYear "2017" @default.
- W2746336159 type Work @default.
- W2746336159 sameAs 2746336159 @default.
- W2746336159 citedByCount "9" @default.
- W2746336159 countsByYear W27463361592018 @default.
- W2746336159 countsByYear W27463361592019 @default.
- W2746336159 countsByYear W27463361592020 @default.
- W2746336159 countsByYear W27463361592021 @default.
- W2746336159 countsByYear W27463361592022 @default.
- W2746336159 countsByYear W27463361592023 @default.