Matches in SemOpenAlex for { <https://semopenalex.org/work/W2746473886> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2746473886 abstract "Bipedal locomotion is a challenging task in the sense that it requires to maintain dynamic balance while steering the gait in potentially complex environments. Yet, humans usually manage to move without any apparent difficulty, even on rough terrains. This requires a complex control scheme which is far from being understood. In this thesis, we take inspiration from the impressive human walking capabilities to design neuromuscular controllers for humanoid robots. More precisely, we control the robot motors to reproduce the action of virtual muscles commanded by stimulations (i.e. neural signals), similarly to what is done during human locomotion. Because the human neural circuitry commanding these muscles is not completely known, we make hypotheses about this control scheme to simplify it and progressively refine the corresponding rules. This thesis thus aims at developing new walking algorithms for humanoid robots in order to obtain fast, human-like and energetically efficient gaits. In particular, gait robustness and richness are two key aspects of this work. In other words, the gaits developed in the thesis can be steered by an external operator, while being resistant to external perturbations. This is mainly tested during blind walking experiments on COMAN, a 95 cm tall humanoid robot. Yet, the proposed controllers can be adapted to other humanoid robots. In the beginning of this thesis, we adapt and port an existing reflex-based neuromuscular model to the real COMAN platform. When tested in a 2D simulation environment, this model was capable of reproducing stable human-like locomotion. By porting it to real hardware, we show that these neuromuscular controllers are viable solutions to develop new controllers for robotics locomotion. Starting from this reflex-based model, we progressively iterate and transform the stimulation rules to add new features. In particular, gait modulation is obtained with the inclusion of a central pattern generator (CPG), a neural circuit capable of producing rhythmic patterns of neural activity without receiving rhythmic inputs. Using this CPG, the 2D walker controllers are incremented to generate gaits across a range of forward speeds close to the normal human one. By using a similar control method, we also obtain 2D running gaits whose speed can be controlled by a human operator. The walking controllers are later extended to 3D scenarios (i.e. no motion constraint) with the capability to adapt both the forward speed and the heading direction (including steering curvature). In parallel, we also develop a method to automatically learn stimulation networks for a given task and we study how flexible feet affect the gait in terms of robustness and energy efficiency. In sum, we develop neuromuscular controllers generating human-like gaits with steering capabilities. These controllers recruit three main components: (i) virtual muscles generating torque references at the joint level, (ii) neural signals commanding these muscles with reflexes and CPG signals, and (iii) higher level commands controlling speed and heading. Interestingly, these developments target humanoid robots locomotion but can also be used to better understand human locomotion. In particular, the recruitment of a CPG during human locomotion is still a matter open to debate. This question can thus benefit from the experiments performed in this thesis." @default.
- W2746473886 created "2017-08-31" @default.
- W2746473886 creator A5008787909 @default.
- W2746473886 creator A5078255749 @default.
- W2746473886 date "2017-01-01" @default.
- W2746473886 modified "2023-09-23" @default.
- W2746473886 title "Rich and robust bio-inspired locomotion control for humanoid robots" @default.
- W2746473886 doi "https://doi.org/10.5075/epfl-thesis-7879" @default.
- W2746473886 hasPublicationYear "2017" @default.
- W2746473886 type Work @default.
- W2746473886 sameAs 2746473886 @default.
- W2746473886 citedByCount "0" @default.
- W2746473886 crossrefType "journal-article" @default.
- W2746473886 hasAuthorship W2746473886A5008787909 @default.
- W2746473886 hasAuthorship W2746473886A5078255749 @default.
- W2746473886 hasConcept C104317684 @default.
- W2746473886 hasConcept C127413603 @default.
- W2746473886 hasConcept C133731056 @default.
- W2746473886 hasConcept C151800584 @default.
- W2746473886 hasConcept C154945302 @default.
- W2746473886 hasConcept C185592680 @default.
- W2746473886 hasConcept C19966478 @default.
- W2746473886 hasConcept C41008148 @default.
- W2746473886 hasConcept C42407357 @default.
- W2746473886 hasConcept C44154836 @default.
- W2746473886 hasConcept C55493867 @default.
- W2746473886 hasConcept C60692881 @default.
- W2746473886 hasConcept C6101204 @default.
- W2746473886 hasConcept C63479239 @default.
- W2746473886 hasConcept C65401140 @default.
- W2746473886 hasConcept C86803240 @default.
- W2746473886 hasConcept C90509273 @default.
- W2746473886 hasConceptScore W2746473886C104317684 @default.
- W2746473886 hasConceptScore W2746473886C127413603 @default.
- W2746473886 hasConceptScore W2746473886C133731056 @default.
- W2746473886 hasConceptScore W2746473886C151800584 @default.
- W2746473886 hasConceptScore W2746473886C154945302 @default.
- W2746473886 hasConceptScore W2746473886C185592680 @default.
- W2746473886 hasConceptScore W2746473886C19966478 @default.
- W2746473886 hasConceptScore W2746473886C41008148 @default.
- W2746473886 hasConceptScore W2746473886C42407357 @default.
- W2746473886 hasConceptScore W2746473886C44154836 @default.
- W2746473886 hasConceptScore W2746473886C55493867 @default.
- W2746473886 hasConceptScore W2746473886C60692881 @default.
- W2746473886 hasConceptScore W2746473886C6101204 @default.
- W2746473886 hasConceptScore W2746473886C63479239 @default.
- W2746473886 hasConceptScore W2746473886C65401140 @default.
- W2746473886 hasConceptScore W2746473886C86803240 @default.
- W2746473886 hasConceptScore W2746473886C90509273 @default.
- W2746473886 hasLocation W27464738861 @default.
- W2746473886 hasOpenAccess W2746473886 @default.
- W2746473886 hasPrimaryLocation W27464738861 @default.
- W2746473886 hasRelatedWork W1555030325 @default.
- W2746473886 hasRelatedWork W1560674429 @default.
- W2746473886 hasRelatedWork W1803908658 @default.
- W2746473886 hasRelatedWork W1976900088 @default.
- W2746473886 hasRelatedWork W2065220180 @default.
- W2746473886 hasRelatedWork W2097400963 @default.
- W2746473886 hasRelatedWork W2107960288 @default.
- W2746473886 hasRelatedWork W2161749612 @default.
- W2746473886 hasRelatedWork W2213545333 @default.
- W2746473886 hasRelatedWork W2479006220 @default.
- W2746473886 hasRelatedWork W2546861332 @default.
- W2746473886 hasRelatedWork W2741554734 @default.
- W2746473886 hasRelatedWork W2769380217 @default.
- W2746473886 hasRelatedWork W2897405762 @default.
- W2746473886 hasRelatedWork W2968287563 @default.
- W2746473886 hasRelatedWork W3080662046 @default.
- W2746473886 hasRelatedWork W3090147192 @default.
- W2746473886 hasRelatedWork W3207380642 @default.
- W2746473886 hasRelatedWork W88348552 @default.
- W2746473886 hasRelatedWork W2978339404 @default.
- W2746473886 isParatext "false" @default.
- W2746473886 isRetracted "false" @default.
- W2746473886 magId "2746473886" @default.
- W2746473886 workType "article" @default.