Matches in SemOpenAlex for { <https://semopenalex.org/work/W2746603780> ?p ?o ?g. }
- W2746603780 endingPage "2266" @default.
- W2746603780 startingPage "2253" @default.
- W2746603780 abstract "Brains are composed of networks of an enormous number of neurons interconnected with synapses. Neural information is carried by the electrical signals within neurons and the chemical signals among neurons. Generating these electrical and chemical signals is metabolically expensive. The fundamental issue raised here is whether brains have evolved efficient ways of developing an energy‐efficient neural code from the molecular level to the circuit level. Here, we summarize the factors and biophysical mechanisms that could contribute to the energy‐efficient neural code for processing input signals. The factors range from ion channel kinetics, body temperature, axonal propagation of action potentials, low‐probability release of synaptic neurotransmitters, optimal input and noise, the size of neurons and neuronal clusters, excitation/inhibition balance, coding strategy, cortical wiring, and the organization of functional connectivity. Both experimental and computational evidence suggests that neural systems may use these factors to maximize the efficiency of energy consumption in processing neural signals. Studies indicate that efficient energy utilization may be universal in neuronal systems as an evolutionary consequence of the pressure of limited energy. As a result, neuronal connections may be wired in a highly economical manner to lower energy costs and space. Individual neurons within a network may encode independent stimulus components to allow a minimal number of neurons to represent whole stimulus characteristics efficiently. This basic principle may fundamentally change our view of how billions of neurons organize themselves into complex circuits to operate and generate the most powerful intelligent cognition in nature. © 2017 Wiley Periodicals, Inc." @default.
- W2746603780 created "2017-08-31" @default.
- W2746603780 creator A5012163627 @default.
- W2746603780 creator A5027127419 @default.
- W2746603780 date "2017-08-22" @default.
- W2746603780 modified "2023-10-15" @default.
- W2746603780 title "Energy‐efficient neural information processing in individual neurons and neuronal networks" @default.
- W2746603780 cites W1487695731 @default.
- W2746603780 cites W1512980052 @default.
- W2746603780 cites W1514853588 @default.
- W2746603780 cites W1598036770 @default.
- W2746603780 cites W1624178692 @default.
- W2746603780 cites W1628518928 @default.
- W2746603780 cites W1673584506 @default.
- W2746603780 cites W1680669385 @default.
- W2746603780 cites W1878427780 @default.
- W2746603780 cites W1964031992 @default.
- W2746603780 cites W1965762557 @default.
- W2746603780 cites W1968941013 @default.
- W2746603780 cites W1970597681 @default.
- W2746603780 cites W1973747802 @default.
- W2746603780 cites W1974049455 @default.
- W2746603780 cites W1974705591 @default.
- W2746603780 cites W1976591701 @default.
- W2746603780 cites W1977450749 @default.
- W2746603780 cites W1979426401 @default.
- W2746603780 cites W1984522801 @default.
- W2746603780 cites W1985940938 @default.
- W2746603780 cites W1986098213 @default.
- W2746603780 cites W1987924998 @default.
- W2746603780 cites W1988038191 @default.
- W2746603780 cites W1989893274 @default.
- W2746603780 cites W1991549674 @default.
- W2746603780 cites W1993887342 @default.
- W2746603780 cites W1995054780 @default.
- W2746603780 cites W1999133651 @default.
- W2746603780 cites W1999488699 @default.
- W2746603780 cites W2000619457 @default.
- W2746603780 cites W2002595432 @default.
- W2746603780 cites W2004333655 @default.
- W2746603780 cites W2010434889 @default.
- W2746603780 cites W2011961540 @default.
- W2746603780 cites W2012280281 @default.
- W2746603780 cites W2014557292 @default.
- W2746603780 cites W2016927879 @default.
- W2746603780 cites W2019484205 @default.
- W2746603780 cites W2024159878 @default.
- W2746603780 cites W2024633374 @default.
- W2746603780 cites W2025687881 @default.
- W2746603780 cites W2029349218 @default.
- W2746603780 cites W2030362416 @default.
- W2746603780 cites W2032774941 @default.
- W2746603780 cites W2037156065 @default.
- W2746603780 cites W2039701538 @default.
- W2746603780 cites W2041158750 @default.
- W2746603780 cites W2042422091 @default.
- W2746603780 cites W2044101483 @default.
- W2746603780 cites W2044770804 @default.
- W2746603780 cites W2053469855 @default.
- W2746603780 cites W2055938779 @default.
- W2746603780 cites W2058670155 @default.
- W2746603780 cites W2059010387 @default.
- W2746603780 cites W2059825138 @default.
- W2746603780 cites W2060193975 @default.
- W2746603780 cites W2064039476 @default.
- W2746603780 cites W2065575763 @default.
- W2746603780 cites W2067219344 @default.
- W2746603780 cites W2067259649 @default.
- W2746603780 cites W2068971750 @default.
- W2746603780 cites W2070754581 @default.
- W2746603780 cites W2071199993 @default.
- W2746603780 cites W2071714163 @default.
- W2746603780 cites W2072150567 @default.
- W2746603780 cites W2074376560 @default.
- W2746603780 cites W2075187489 @default.
- W2746603780 cites W2079111057 @default.
- W2746603780 cites W2079364317 @default.
- W2746603780 cites W2079819115 @default.
- W2746603780 cites W2081354168 @default.
- W2746603780 cites W2082622165 @default.
- W2746603780 cites W2083252150 @default.
- W2746603780 cites W2099901681 @default.
- W2746603780 cites W2100701643 @default.
- W2746603780 cites W2102717709 @default.
- W2746603780 cites W2104902179 @default.
- W2746603780 cites W2106700142 @default.
- W2746603780 cites W2111692402 @default.
- W2746603780 cites W2112090702 @default.
- W2746603780 cites W2114104729 @default.
- W2746603780 cites W2114504899 @default.
- W2746603780 cites W2116079555 @default.
- W2746603780 cites W2118323338 @default.
- W2746603780 cites W2119321873 @default.
- W2746603780 cites W2121345030 @default.
- W2746603780 cites W2121464008 @default.
- W2746603780 cites W2124398758 @default.
- W2746603780 cites W2125472588 @default.
- W2746603780 cites W2126497605 @default.