Matches in SemOpenAlex for { <https://semopenalex.org/work/W2746646557> ?p ?o ?g. }
- W2746646557 endingPage "875" @default.
- W2746646557 startingPage "875" @default.
- W2746646557 abstract "Airborne imaging spectroscopy (IS) and laser scanning (ALS) have been explored widely for tree species classification during the past decades. However, African agroforestry areas, where a few exotic tree species are dominant and many native species occur less frequently, have not yet been studied. Obtaining maps of tree species would provide useful information for the characterization of agroforestry systems and detecting invasive species. Our objective was to study tree species classification in a diverse tropical landscape using IS and ALS data at the tree crown level, with primary interest in the exotic tree species. We performed multiple analyses based on different IS and ALS feature sets, identified important features using feature selection, and evaluated the impact of combining the two data sources. Given that a high number of tree species with limited sample size (499 samples for 31 species) was expected to limit the classification accuracy, we tested different approaches to group the species based on the frequency of their occurrence and Jeffries–Matusita (JM) distance. Surface reflectance at wavelengths between 400–450 nm and 750–800 nm, and height to crown width ratio, were identified as important features. Nonetheless, a selection of minimum noise fraction (MNF) transformed reflectance bands showed superior performance. Support vector machine classifier performed slightly better than the random forest classifier, but the improvement was not statistically significant for the best performing feature set. The highest F1-scores were achieved when each of the species was classified separately against a mixed group of all other species, which makes this approach suitable for invasive species detection. Our results are valuable for organizations working on biodiversity conservation and improving agroforestry practices, as we showed how the non-native Eucalyptus spp., Acacia mearnsii and Grevillea robusta (mean F1-scores 76%, 79% and 89%, respectively) trees can be mapped with good accuracy. We also found a group of six fruit bearing trees using JM distance, which was classified with mean F1-score of 65%. This was a useful finding, as these species could not be classified with acceptable accuracy individually, while they all share common economic and ecological importance." @default.
- W2746646557 created "2017-08-31" @default.
- W2746646557 creator A5002576056 @default.
- W2746646557 creator A5009535742 @default.
- W2746646557 creator A5035958401 @default.
- W2746646557 creator A5036822460 @default.
- W2746646557 creator A5083444677 @default.
- W2746646557 date "2017-08-23" @default.
- W2746646557 modified "2023-09-25" @default.
- W2746646557 title "Classification of Tree Species in a Diverse African Agroforestry Landscape Using Imaging Spectroscopy and Laser Scanning" @default.
- W2746646557 cites W1215215790 @default.
- W2746646557 cites W1488309124 @default.
- W2746646557 cites W1496825334 @default.
- W2746646557 cites W1503353935 @default.
- W2746646557 cites W1831050183 @default.
- W2746646557 cites W1977994809 @default.
- W2746646557 cites W1985291094 @default.
- W2746646557 cites W2014894537 @default.
- W2746646557 cites W2027144818 @default.
- W2746646557 cites W2033591013 @default.
- W2746646557 cites W2039067795 @default.
- W2746646557 cites W2046661288 @default.
- W2746646557 cites W2052331316 @default.
- W2746646557 cites W2061753798 @default.
- W2746646557 cites W2064289726 @default.
- W2746646557 cites W2070388464 @default.
- W2746646557 cites W2084291846 @default.
- W2746646557 cites W2085294933 @default.
- W2746646557 cites W2089316943 @default.
- W2746646557 cites W2090624115 @default.
- W2746646557 cites W2094128702 @default.
- W2746646557 cites W2097528933 @default.
- W2746646557 cites W2109628770 @default.
- W2746646557 cites W2109787281 @default.
- W2746646557 cites W2120068645 @default.
- W2746646557 cites W2125724410 @default.
- W2746646557 cites W2129920251 @default.
- W2746646557 cites W2134213291 @default.
- W2746646557 cites W2136625467 @default.
- W2746646557 cites W2138973222 @default.
- W2746646557 cites W2155261478 @default.
- W2746646557 cites W2157963336 @default.
- W2746646557 cites W2159235936 @default.
- W2746646557 cites W2161541262 @default.
- W2746646557 cites W2167277498 @default.
- W2746646557 cites W2168481151 @default.
- W2746646557 cites W2182128045 @default.
- W2746646557 cites W2261059368 @default.
- W2746646557 cites W2279188631 @default.
- W2746646557 cites W2313448762 @default.
- W2746646557 cites W2315994349 @default.
- W2746646557 cites W2405365025 @default.
- W2746646557 cites W2515306179 @default.
- W2746646557 cites W2557117995 @default.
- W2746646557 cites W2911964244 @default.
- W2746646557 cites W634846817 @default.
- W2746646557 cites W92421945 @default.
- W2746646557 doi "https://doi.org/10.3390/rs9090875" @default.
- W2746646557 hasPublicationYear "2017" @default.
- W2746646557 type Work @default.
- W2746646557 sameAs 2746646557 @default.
- W2746646557 citedByCount "29" @default.
- W2746646557 countsByYear W27466465572018 @default.
- W2746646557 countsByYear W27466465572019 @default.
- W2746646557 countsByYear W27466465572020 @default.
- W2746646557 countsByYear W27466465572021 @default.
- W2746646557 countsByYear W27466465572022 @default.
- W2746646557 countsByYear W27466465572023 @default.
- W2746646557 crossrefType "journal-article" @default.
- W2746646557 hasAuthorship W2746646557A5002576056 @default.
- W2746646557 hasAuthorship W2746646557A5009535742 @default.
- W2746646557 hasAuthorship W2746646557A5035958401 @default.
- W2746646557 hasAuthorship W2746646557A5036822460 @default.
- W2746646557 hasAuthorship W2746646557A5083444677 @default.
- W2746646557 hasBestOaLocation W27466465571 @default.
- W2746646557 hasConcept C113174947 @default.
- W2746646557 hasConcept C134306372 @default.
- W2746646557 hasConcept C148483581 @default.
- W2746646557 hasConcept C153180895 @default.
- W2746646557 hasConcept C154945302 @default.
- W2746646557 hasConcept C169258074 @default.
- W2746646557 hasConcept C205649164 @default.
- W2746646557 hasConcept C33923547 @default.
- W2746646557 hasConcept C41008148 @default.
- W2746646557 hasConcept C62649853 @default.
- W2746646557 hasConcept C95623464 @default.
- W2746646557 hasConceptScore W2746646557C113174947 @default.
- W2746646557 hasConceptScore W2746646557C134306372 @default.
- W2746646557 hasConceptScore W2746646557C148483581 @default.
- W2746646557 hasConceptScore W2746646557C153180895 @default.
- W2746646557 hasConceptScore W2746646557C154945302 @default.
- W2746646557 hasConceptScore W2746646557C169258074 @default.
- W2746646557 hasConceptScore W2746646557C205649164 @default.
- W2746646557 hasConceptScore W2746646557C33923547 @default.
- W2746646557 hasConceptScore W2746646557C41008148 @default.
- W2746646557 hasConceptScore W2746646557C62649853 @default.
- W2746646557 hasConceptScore W2746646557C95623464 @default.
- W2746646557 hasFunder F4320325792 @default.