Matches in SemOpenAlex for { <https://semopenalex.org/work/W2746744872> ?p ?o ?g. }
- W2746744872 endingPage "1089" @default.
- W2746744872 startingPage "1068" @default.
- W2746744872 abstract "Abstract A hybrid technique that combines an artificial neural network with a particle swarm optimization (ANN+PSO) was used to forecast the disturbance storm time ( Dst ) index from 1 to 6 h ahead. Our ANN was optimized by PSO to update ANN weights and to predict the short‐term Dst index using past values as input parameters. The database used contains 233,760 hourly data from 1 January 1990 to 31 August 2016, considering storms and quiet period, grouped into three data sets: learning set (with 116,880 hourly data points), validation set (with 58,440 data points), and testing set (with 58,440 data points). Several ANN topologies were studied, and the best architecture was determined by systematically adding neurons and evaluating the root‐mean‐square error (RMSE) and the correlation coefficient ( R ) during the training process. These results show that the hybrid algorithm is a powerful technique for forecasting the Dst index a short time in advance like t + 1 to t + 3, with RMSE from 3.5 nT to 7.5 nT, and R from 0.98 to 0.90. However, t + 4 to t + 6 predictions become slightly more uncertain, with RMSE from 8.8 nT to 10.9 nT, and R from 0.86 to 0.79. Additionally, an exhaustive analysis according to geomagnetic storm magnitude was conducted. In general, the results show that our hybrid algorithm can be correctly trained to forecast the Dst index with appropriate precision and that Dst past behavior significantly affects adequate training and predicting capabilities of the implemented ANN." @default.
- W2746744872 created "2017-08-31" @default.
- W2746744872 creator A5012679031 @default.
- W2746744872 creator A5048550382 @default.
- W2746744872 creator A5055681903 @default.
- W2746744872 creator A5058994555 @default.
- W2746744872 date "2017-08-01" @default.
- W2746744872 modified "2023-10-16" @default.
- W2746744872 title "Forecasting the<i>Dst</i>index using a swarm-optimized neural network" @default.
- W2746744872 cites W1494970653 @default.
- W2746744872 cites W1512652263 @default.
- W2746744872 cites W1559197115 @default.
- W2746744872 cites W1561862821 @default.
- W2746744872 cites W1594202815 @default.
- W2746744872 cites W1605872965 @default.
- W2746744872 cites W1654885892 @default.
- W2746744872 cites W1665152549 @default.
- W2746744872 cites W1875348914 @default.
- W2746744872 cites W1897193653 @default.
- W2746744872 cites W1964468250 @default.
- W2746744872 cites W1966856590 @default.
- W2746744872 cites W1970488982 @default.
- W2746744872 cites W1974703133 @default.
- W2746744872 cites W1975279341 @default.
- W2746744872 cites W1975559673 @default.
- W2746744872 cites W1977515458 @default.
- W2746744872 cites W1978532957 @default.
- W2746744872 cites W1979448257 @default.
- W2746744872 cites W1980260426 @default.
- W2746744872 cites W1980286223 @default.
- W2746744872 cites W1982034537 @default.
- W2746744872 cites W1986392119 @default.
- W2746744872 cites W1986396546 @default.
- W2746744872 cites W1987495055 @default.
- W2746744872 cites W1989937564 @default.
- W2746744872 cites W1993850015 @default.
- W2746744872 cites W1994646147 @default.
- W2746744872 cites W1995666853 @default.
- W2746744872 cites W1998983070 @default.
- W2746744872 cites W2005544279 @default.
- W2746744872 cites W2005785140 @default.
- W2746744872 cites W2006369817 @default.
- W2746744872 cites W2007555017 @default.
- W2746744872 cites W2014451338 @default.
- W2746744872 cites W2016589492 @default.
- W2746744872 cites W2019672582 @default.
- W2746744872 cites W2020316301 @default.
- W2746744872 cites W2021497355 @default.
- W2746744872 cites W2022439897 @default.
- W2746744872 cites W2025260803 @default.
- W2746744872 cites W2025451149 @default.
- W2746744872 cites W2027983488 @default.
- W2746744872 cites W2028847290 @default.
- W2746744872 cites W2029708797 @default.
- W2746744872 cites W2031234385 @default.
- W2746744872 cites W2034297392 @default.
- W2746744872 cites W2036891932 @default.
- W2746744872 cites W2037870408 @default.
- W2746744872 cites W2039714137 @default.
- W2746744872 cites W2039842895 @default.
- W2746744872 cites W2040798260 @default.
- W2746744872 cites W2041613777 @default.
- W2746744872 cites W2046648585 @default.
- W2746744872 cites W2048235403 @default.
- W2746744872 cites W2050344634 @default.
- W2746744872 cites W2051680981 @default.
- W2746744872 cites W2054826299 @default.
- W2746744872 cites W2055908303 @default.
- W2746744872 cites W2056365973 @default.
- W2746744872 cites W2056728699 @default.
- W2746744872 cites W2059127136 @default.
- W2746744872 cites W2059626240 @default.
- W2746744872 cites W2062278296 @default.
- W2746744872 cites W2064833771 @default.
- W2746744872 cites W2070742793 @default.
- W2746744872 cites W2075287085 @default.
- W2746744872 cites W2076815683 @default.
- W2746744872 cites W2082340226 @default.
- W2746744872 cites W2083267023 @default.
- W2746744872 cites W2094483646 @default.
- W2746744872 cites W2109364787 @default.
- W2746744872 cites W2110485445 @default.
- W2746744872 cites W2113143455 @default.
- W2746744872 cites W2123716044 @default.
- W2746744872 cites W2133130678 @default.
- W2746744872 cites W2140253364 @default.
- W2746744872 cites W2141375123 @default.
- W2746744872 cites W2152195021 @default.
- W2746744872 cites W2153985013 @default.
- W2746744872 cites W2155889930 @default.
- W2746744872 cites W2159035791 @default.
- W2746744872 cites W2159223463 @default.
- W2746744872 cites W2164781446 @default.
- W2746744872 cites W2165368814 @default.
- W2746744872 cites W2169245194 @default.
- W2746744872 cites W2169869208 @default.
- W2746744872 cites W2170809929 @default.
- W2746744872 cites W2171800554 @default.