Matches in SemOpenAlex for { <https://semopenalex.org/work/W2746829572> ?p ?o ?g. }
- W2746829572 endingPage "1116" @default.
- W2746829572 startingPage "1107" @default.
- W2746829572 abstract "Objective: This paper tackles the problem of transfer learning in the context of electroencephalogram (EEG)-based brain-computer interface (BCI) classification. In particular, the problems of cross-session and cross-subject classification are considered. These problems concern the ability to use data from previous sessions or from a database of past users to calibrate and initialize the classifier, allowing a calibration-less BCI mode of operation. Methods: Data are represented using spatial covariance matrices of the EEG signals, exploiting the recent successful techniques based on the Riemannian geometry of the manifold of symmetric positive definite (SPD) matrices. Cross-session and cross-subject classification can be difficult, due to the many changes intervening between sessions and between subjects, including physiological, environmental, as well as instrumental changes. Here, we propose to affine transform the covariance matrices of every session/subject in order to center them with respect to a reference covariance matrix, making data from different sessions/subjects comparable. Then, classification is performed both using a standard minimum distance to mean classifier, and through a probabilistic classifier recently developed in the literature, based on a density function (mixture of Riemannian Gaussian distributions) defined on the SPD manifold. Results: The improvements in terms of classification performances achieved by introducing the affine transformation are documented with the analysis of two BCI datasets. Conclusion and significance: Hence, we make, through the affine transformation proposed, data from different sessions and subject comparable, providing a significant improvement in the BCI transfer learning problem." @default.
- W2746829572 created "2017-08-31" @default.
- W2746829572 creator A5042761955 @default.
- W2746829572 creator A5055346590 @default.
- W2746829572 creator A5055562421 @default.
- W2746829572 creator A5066934697 @default.
- W2746829572 creator A5076161191 @default.
- W2746829572 date "2018-05-01" @default.
- W2746829572 modified "2023-10-18" @default.
- W2746829572 title "Transfer Learning: A Riemannian Geometry Framework With Applications to Brain–Computer Interfaces" @default.
- W2746829572 cites W1965769973 @default.
- W2746829572 cites W1983496390 @default.
- W2746829572 cites W2011004955 @default.
- W2746829572 cites W2019927695 @default.
- W2746829572 cites W2032236594 @default.
- W2746829572 cites W2035715639 @default.
- W2746829572 cites W2044981864 @default.
- W2746829572 cites W2045749126 @default.
- W2746829572 cites W2079610602 @default.
- W2746829572 cites W2089460470 @default.
- W2746829572 cites W2096597330 @default.
- W2746829572 cites W2099509424 @default.
- W2746829572 cites W2117895630 @default.
- W2746829572 cites W2124610677 @default.
- W2746829572 cites W2130705118 @default.
- W2746829572 cites W2133323250 @default.
- W2746829572 cites W2152119085 @default.
- W2746829572 cites W2152171700 @default.
- W2746829572 cites W2161046211 @default.
- W2746829572 cites W2164479327 @default.
- W2746829572 cites W2165698076 @default.
- W2746829572 cites W2246632570 @default.
- W2746829572 cites W2519249881 @default.
- W2746829572 cites W2570697512 @default.
- W2746829572 cites W2602279467 @default.
- W2746829572 cites W3102317997 @default.
- W2746829572 cites W3124617164 @default.
- W2746829572 cites W4247263980 @default.
- W2746829572 doi "https://doi.org/10.1109/tbme.2017.2742541" @default.
- W2746829572 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28841546" @default.
- W2746829572 hasPublicationYear "2018" @default.
- W2746829572 type Work @default.
- W2746829572 sameAs 2746829572 @default.
- W2746829572 citedByCount "209" @default.
- W2746829572 countsByYear W27468295722018 @default.
- W2746829572 countsByYear W27468295722019 @default.
- W2746829572 countsByYear W27468295722020 @default.
- W2746829572 countsByYear W27468295722021 @default.
- W2746829572 countsByYear W27468295722022 @default.
- W2746829572 countsByYear W27468295722023 @default.
- W2746829572 crossrefType "journal-article" @default.
- W2746829572 hasAuthorship W2746829572A5042761955 @default.
- W2746829572 hasAuthorship W2746829572A5055346590 @default.
- W2746829572 hasAuthorship W2746829572A5055562421 @default.
- W2746829572 hasAuthorship W2746829572A5066934697 @default.
- W2746829572 hasAuthorship W2746829572A5076161191 @default.
- W2746829572 hasBestOaLocation W27468295722 @default.
- W2746829572 hasConcept C105795698 @default.
- W2746829572 hasConcept C109546454 @default.
- W2746829572 hasConcept C11413529 @default.
- W2746829572 hasConcept C118552586 @default.
- W2746829572 hasConcept C119857082 @default.
- W2746829572 hasConcept C121332964 @default.
- W2746829572 hasConcept C12520029 @default.
- W2746829572 hasConcept C134306372 @default.
- W2746829572 hasConcept C150899416 @default.
- W2746829572 hasConcept C153180895 @default.
- W2746829572 hasConcept C154945302 @default.
- W2746829572 hasConcept C15744967 @default.
- W2746829572 hasConcept C163716315 @default.
- W2746829572 hasConcept C173201364 @default.
- W2746829572 hasConcept C178650346 @default.
- W2746829572 hasConcept C181104567 @default.
- W2746829572 hasConcept C185142706 @default.
- W2746829572 hasConcept C195065555 @default.
- W2746829572 hasConcept C2524010 @default.
- W2746829572 hasConcept C2779593128 @default.
- W2746829572 hasConcept C33923547 @default.
- W2746829572 hasConcept C41008148 @default.
- W2746829572 hasConcept C522805319 @default.
- W2746829572 hasConcept C62520636 @default.
- W2746829572 hasConcept C92757383 @default.
- W2746829572 hasConcept C95623464 @default.
- W2746829572 hasConceptScore W2746829572C105795698 @default.
- W2746829572 hasConceptScore W2746829572C109546454 @default.
- W2746829572 hasConceptScore W2746829572C11413529 @default.
- W2746829572 hasConceptScore W2746829572C118552586 @default.
- W2746829572 hasConceptScore W2746829572C119857082 @default.
- W2746829572 hasConceptScore W2746829572C121332964 @default.
- W2746829572 hasConceptScore W2746829572C12520029 @default.
- W2746829572 hasConceptScore W2746829572C134306372 @default.
- W2746829572 hasConceptScore W2746829572C150899416 @default.
- W2746829572 hasConceptScore W2746829572C153180895 @default.
- W2746829572 hasConceptScore W2746829572C154945302 @default.
- W2746829572 hasConceptScore W2746829572C15744967 @default.
- W2746829572 hasConceptScore W2746829572C163716315 @default.
- W2746829572 hasConceptScore W2746829572C173201364 @default.
- W2746829572 hasConceptScore W2746829572C178650346 @default.