Matches in SemOpenAlex for { <https://semopenalex.org/work/W2746923101> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2746923101 endingPage "334" @default.
- W2746923101 startingPage "323" @default.
- W2746923101 abstract "In the multimedia era a large volume of video data can be recorded during a certain period of time by multiple cameras. Such a rapid growth of video data requires both effective and efficient multiview video summarization techniques. The users can quickly browse and comprehend a large amount of audiovisual data. It is very difficult in real-time to manage and access the huge amount of video-content-handling issues of interview dependencies significant variations in illumination and presence of many unimportant frames with low activity. In this paper we propose a local-alignment-based FASTA approach to summarize the events in multiview videos as a solution of the aforementioned problems. A deep learning framework is used to extract the features to resolve the problem of variations in illumination and to remove fine texture details and detect the objects in a frame. Interview dependencies among multiple views of video are then captured via the FASTA algorithm through local alignment. Finally object tracking is applied to extract the frames with low activity. Subjective as well as objective evaluations clearly indicate the effectiveness of the proposed approach. Experiments show that the proposed summarization method successfully reduces the video content while keeping momentous information in the form of events. A computing analysis of the system also shows that it meets the requirement of real-time applications." @default.
- W2746923101 created "2017-08-31" @default.
- W2746923101 creator A5073621919 @default.
- W2746923101 creator A5085001581 @default.
- W2746923101 date "2018-02-01" @default.
- W2746923101 modified "2023-10-16" @default.
- W2746923101 title "F-DES: Fast and Deep Event Summarization" @default.
- W2746923101 cites W1587083568 @default.
- W2746923101 cites W1904325426 @default.
- W2746923101 cites W1926243429 @default.
- W2746923101 cites W1965621269 @default.
- W2746923101 cites W1992841082 @default.
- W2746923101 cites W2014234730 @default.
- W2746923101 cites W2018578326 @default.
- W2746923101 cites W2020836902 @default.
- W2746923101 cites W2022177798 @default.
- W2746923101 cites W2058001207 @default.
- W2746923101 cites W2058187809 @default.
- W2746923101 cites W2058478193 @default.
- W2746923101 cites W2059444463 @default.
- W2746923101 cites W2077008096 @default.
- W2746923101 cites W2083545271 @default.
- W2746923101 cites W2092825074 @default.
- W2746923101 cites W2094325573 @default.
- W2746923101 cites W2095536970 @default.
- W2746923101 cites W2098582932 @default.
- W2746923101 cites W2105174364 @default.
- W2746923101 cites W2106910805 @default.
- W2746923101 cites W2111918405 @default.
- W2746923101 cites W2115060048 @default.
- W2746923101 cites W2119362355 @default.
- W2746923101 cites W2127855520 @default.
- W2746923101 cites W2127992984 @default.
- W2746923101 cites W2140157192 @default.
- W2746923101 cites W2141652419 @default.
- W2746923101 cites W2163527813 @default.
- W2746923101 cites W2168866870 @default.
- W2746923101 cites W2314087435 @default.
- W2746923101 cites W2467794422 @default.
- W2746923101 cites W2524170164 @default.
- W2746923101 cites W2603823201 @default.
- W2746923101 cites W2608833138 @default.
- W2746923101 cites W2765333864 @default.
- W2746923101 cites W2963321993 @default.
- W2746923101 cites W4300796046 @default.
- W2746923101 cites W2156667608 @default.
- W2746923101 doi "https://doi.org/10.1109/tmm.2017.2741423" @default.
- W2746923101 hasPublicationYear "2018" @default.
- W2746923101 type Work @default.
- W2746923101 sameAs 2746923101 @default.
- W2746923101 citedByCount "113" @default.
- W2746923101 countsByYear W27469231012018 @default.
- W2746923101 countsByYear W27469231012019 @default.
- W2746923101 countsByYear W27469231012020 @default.
- W2746923101 countsByYear W27469231012021 @default.
- W2746923101 countsByYear W27469231012022 @default.
- W2746923101 countsByYear W27469231012023 @default.
- W2746923101 crossrefType "journal-article" @default.
- W2746923101 hasAuthorship W2746923101A5073621919 @default.
- W2746923101 hasAuthorship W2746923101A5085001581 @default.
- W2746923101 hasConcept C121332964 @default.
- W2746923101 hasConcept C154945302 @default.
- W2746923101 hasConcept C170858558 @default.
- W2746923101 hasConcept C2779662365 @default.
- W2746923101 hasConcept C41008148 @default.
- W2746923101 hasConcept C62520636 @default.
- W2746923101 hasConceptScore W2746923101C121332964 @default.
- W2746923101 hasConceptScore W2746923101C154945302 @default.
- W2746923101 hasConceptScore W2746923101C170858558 @default.
- W2746923101 hasConceptScore W2746923101C2779662365 @default.
- W2746923101 hasConceptScore W2746923101C41008148 @default.
- W2746923101 hasConceptScore W2746923101C62520636 @default.
- W2746923101 hasIssue "2" @default.
- W2746923101 hasLocation W27469231011 @default.
- W2746923101 hasOpenAccess W2746923101 @default.
- W2746923101 hasPrimaryLocation W27469231011 @default.
- W2746923101 hasRelatedWork W2285613413 @default.
- W2746923101 hasRelatedWork W2308250245 @default.
- W2746923101 hasRelatedWork W2351187795 @default.
- W2746923101 hasRelatedWork W2380641910 @default.
- W2746923101 hasRelatedWork W2389846579 @default.
- W2746923101 hasRelatedWork W2561691764 @default.
- W2746923101 hasRelatedWork W2589098947 @default.
- W2746923101 hasRelatedWork W2604412476 @default.
- W2746923101 hasRelatedWork W2887112617 @default.
- W2746923101 hasRelatedWork W52724171 @default.
- W2746923101 hasVolume "20" @default.
- W2746923101 isParatext "false" @default.
- W2746923101 isRetracted "false" @default.
- W2746923101 magId "2746923101" @default.
- W2746923101 workType "article" @default.