Matches in SemOpenAlex for { <https://semopenalex.org/work/W2747352308> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2747352308 endingPage "430" @default.
- W2747352308 startingPage "417" @default.
- W2747352308 abstract "Abstract Human faces are almost always the focus of visual attention because of the rich semantic information therein. While some visual attention models incorporating face cues indeed perform better in images with faces, yet there is no systematic analysis of the deployment of visual attention on human faces in the context of visual attention modelling, nor is there any specific attention model designed for face images. On faces, many high-level factors have influence on visual attention. To investigate visual attention on human faces, we first construct a Visual Attention database for Faces (VAF database), which is composed of 481 face images along with eye-tracking data of 22 viewers. Statistics of the eye-movement data show that some high-level factors such as face size, facial features and face pose have impact on visual attention. Thus we propose to build visual attention models specifically for face images through combining low-level saliency calculated by traditional saliency models with high-level facial features. Efficiency of the built models is verified on the VAF database. When combined with high-level facial features, most saliency models can achieve better performance." @default.
- W2747352308 created "2017-08-31" @default.
- W2747352308 creator A5010873624 @default.
- W2747352308 creator A5019708391 @default.
- W2747352308 creator A5035282947 @default.
- W2747352308 creator A5042401810 @default.
- W2747352308 creator A5043405654 @default.
- W2747352308 creator A5055937409 @default.
- W2747352308 creator A5064168853 @default.
- W2747352308 date "2017-12-01" @default.
- W2747352308 modified "2023-10-16" @default.
- W2747352308 title "Visual attention analysis and prediction on human faces" @default.
- W2747352308 cites W1910993067 @default.
- W2747352308 cites W1988649016 @default.
- W2747352308 cites W1992855619 @default.
- W2747352308 cites W1993389465 @default.
- W2747352308 cites W2008066834 @default.
- W2747352308 cites W2025520157 @default.
- W2747352308 cites W2032007016 @default.
- W2747352308 cites W2041719651 @default.
- W2747352308 cites W2055111849 @default.
- W2747352308 cites W2127807804 @default.
- W2747352308 cites W2128272608 @default.
- W2747352308 cites W2133589685 @default.
- W2747352308 cites W2140475460 @default.
- W2747352308 cites W2152233525 @default.
- W2747352308 cites W2155479901 @default.
- W2747352308 cites W2158546915 @default.
- W2747352308 cites W2164084182 @default.
- W2747352308 cites W2510258670 @default.
- W2747352308 cites W2510685912 @default.
- W2747352308 cites W2533370895 @default.
- W2747352308 cites W2571189794 @default.
- W2747352308 cites W2579658395 @default.
- W2747352308 cites W2591829702 @default.
- W2747352308 cites W2621054742 @default.
- W2747352308 cites W2743390484 @default.
- W2747352308 doi "https://doi.org/10.1016/j.ins.2017.08.040" @default.
- W2747352308 hasPublicationYear "2017" @default.
- W2747352308 type Work @default.
- W2747352308 sameAs 2747352308 @default.
- W2747352308 citedByCount "26" @default.
- W2747352308 countsByYear W27473523082018 @default.
- W2747352308 countsByYear W27473523082019 @default.
- W2747352308 countsByYear W27473523082020 @default.
- W2747352308 countsByYear W27473523082021 @default.
- W2747352308 countsByYear W27473523082022 @default.
- W2747352308 countsByYear W27473523082023 @default.
- W2747352308 crossrefType "journal-article" @default.
- W2747352308 hasAuthorship W2747352308A5010873624 @default.
- W2747352308 hasAuthorship W2747352308A5019708391 @default.
- W2747352308 hasAuthorship W2747352308A5035282947 @default.
- W2747352308 hasAuthorship W2747352308A5042401810 @default.
- W2747352308 hasAuthorship W2747352308A5043405654 @default.
- W2747352308 hasAuthorship W2747352308A5055937409 @default.
- W2747352308 hasAuthorship W2747352308A5064168853 @default.
- W2747352308 hasConcept C154945302 @default.
- W2747352308 hasConcept C15744967 @default.
- W2747352308 hasConcept C169760540 @default.
- W2747352308 hasConcept C180747234 @default.
- W2747352308 hasConcept C26760741 @default.
- W2747352308 hasConcept C2986089797 @default.
- W2747352308 hasConcept C41008148 @default.
- W2747352308 hasConceptScore W2747352308C154945302 @default.
- W2747352308 hasConceptScore W2747352308C15744967 @default.
- W2747352308 hasConceptScore W2747352308C169760540 @default.
- W2747352308 hasConceptScore W2747352308C180747234 @default.
- W2747352308 hasConceptScore W2747352308C26760741 @default.
- W2747352308 hasConceptScore W2747352308C2986089797 @default.
- W2747352308 hasConceptScore W2747352308C41008148 @default.
- W2747352308 hasFunder F4320321001 @default.
- W2747352308 hasLocation W27473523081 @default.
- W2747352308 hasOpenAccess W2747352308 @default.
- W2747352308 hasPrimaryLocation W27473523081 @default.
- W2747352308 hasRelatedWork W1999158142 @default.
- W2747352308 hasRelatedWork W2083967247 @default.
- W2747352308 hasRelatedWork W2103241481 @default.
- W2747352308 hasRelatedWork W2182209975 @default.
- W2747352308 hasRelatedWork W2249629397 @default.
- W2747352308 hasRelatedWork W2772011033 @default.
- W2747352308 hasRelatedWork W2787294799 @default.
- W2747352308 hasRelatedWork W2944443295 @default.
- W2747352308 hasRelatedWork W3107474891 @default.
- W2747352308 hasRelatedWork W4249470570 @default.
- W2747352308 hasVolume "420" @default.
- W2747352308 isParatext "false" @default.
- W2747352308 isRetracted "false" @default.
- W2747352308 magId "2747352308" @default.
- W2747352308 workType "article" @default.