Matches in SemOpenAlex for { <https://semopenalex.org/work/W2747487246> ?p ?o ?g. }
- W2747487246 abstract "Fermi operator expansion (FOE) methods are powerful alternatives to diagonalization type methods for solving Kohn-Sham density functional theory (KSDFT). One example is the pole expansion and selected inversion (PEXSI) method, which approximates the Fermi operator by rational matrix functions and reduces the computational complexity to at most quadratic scaling for solving KSDFT. Unlike diagonalization type methods, the chemical potential often cannot be directly read off from the result of a single step of evaluation of the Fermi operator. Hence multiple evaluations are needed to be sequentially performed to compute the chemical potential to ensure the correct number of electrons within a given tolerance. This hinders the performance of FOE methods in practice. In this paper, we develop an efficient and robust strategy to determine the chemical potential in the context of the PEXSI method. The main idea of the new method is not to find the exact chemical potential at each self-consistent-field (SCF) iteration but to dynamically and rigorously update the upper and lower bounds for the true chemical potential, so that the chemical potential reaches its convergence along the SCF iteration. Instead of evaluating the Fermi operator for multiple times sequentially, our method uses a two-level strategy that evaluates the Fermi operators in parallel. In the regime of full parallelization, the wall clock time of each SCF iteration is always close to the time for one single evaluation of the Fermi operator, even when the initial guess is far away from the converged solution. We demonstrate the effectiveness of the new method using examples with metallic and insulating characters, as well as results from ab initio molecular dynamics." @default.
- W2747487246 created "2017-08-31" @default.
- W2747487246 creator A5015860750 @default.
- W2747487246 creator A5036650938 @default.
- W2747487246 date "2017-10-11" @default.
- W2747487246 modified "2023-10-04" @default.
- W2747487246 title "Robust determination of the chemical potential in the pole expansion and selected inversion method for solving Kohn-Sham density functional theory" @default.
- W2747487246 cites W1521291534 @default.
- W2747487246 cites W1758621580 @default.
- W2747487246 cites W1852162656 @default.
- W2747487246 cites W1964357583 @default.
- W2747487246 cites W1966406013 @default.
- W2747487246 cites W1986751761 @default.
- W2747487246 cites W1988150292 @default.
- W2747487246 cites W1996093480 @default.
- W2747487246 cites W2006572775 @default.
- W2747487246 cites W2014166972 @default.
- W2747487246 cites W2035294853 @default.
- W2747487246 cites W2061369241 @default.
- W2747487246 cites W2072565812 @default.
- W2747487246 cites W2073773252 @default.
- W2747487246 cites W2088624536 @default.
- W2747487246 cites W2111108058 @default.
- W2747487246 cites W2122896589 @default.
- W2747487246 cites W2141331848 @default.
- W2747487246 cites W2141704677 @default.
- W2747487246 cites W2142501550 @default.
- W2747487246 cites W2144843195 @default.
- W2747487246 cites W2148424525 @default.
- W2747487246 cites W2274900394 @default.
- W2747487246 cites W2349521134 @default.
- W2747487246 cites W2950119333 @default.
- W2747487246 cites W2962735411 @default.
- W2747487246 cites W3121975268 @default.
- W2747487246 doi "https://doi.org/10.1063/1.5000255" @default.
- W2747487246 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29031270" @default.
- W2747487246 hasPublicationYear "2017" @default.
- W2747487246 type Work @default.
- W2747487246 sameAs 2747487246 @default.
- W2747487246 citedByCount "6" @default.
- W2747487246 countsByYear W27474872462019 @default.
- W2747487246 countsByYear W27474872462020 @default.
- W2747487246 countsByYear W27474872462022 @default.
- W2747487246 crossrefType "journal-article" @default.
- W2747487246 hasAuthorship W2747487246A5015860750 @default.
- W2747487246 hasAuthorship W2747487246A5036650938 @default.
- W2747487246 hasBestOaLocation W27474872461 @default.
- W2747487246 hasConcept C104317684 @default.
- W2747487246 hasConcept C109007969 @default.
- W2747487246 hasConcept C121332964 @default.
- W2747487246 hasConcept C121864883 @default.
- W2747487246 hasConcept C129844170 @default.
- W2747487246 hasConcept C151730666 @default.
- W2747487246 hasConcept C152365726 @default.
- W2747487246 hasConcept C158448853 @default.
- W2747487246 hasConcept C17020691 @default.
- W2747487246 hasConcept C185592680 @default.
- W2747487246 hasConcept C186769553 @default.
- W2747487246 hasConcept C1893757 @default.
- W2747487246 hasConcept C2524010 @default.
- W2747487246 hasConcept C2779343474 @default.
- W2747487246 hasConcept C28826006 @default.
- W2747487246 hasConcept C33923547 @default.
- W2747487246 hasConcept C41008148 @default.
- W2747487246 hasConcept C55493867 @default.
- W2747487246 hasConcept C62520636 @default.
- W2747487246 hasConcept C86339819 @default.
- W2747487246 hasConcept C86803240 @default.
- W2747487246 hasConcept C9059619 @default.
- W2747487246 hasConcept C99844830 @default.
- W2747487246 hasConceptScore W2747487246C104317684 @default.
- W2747487246 hasConceptScore W2747487246C109007969 @default.
- W2747487246 hasConceptScore W2747487246C121332964 @default.
- W2747487246 hasConceptScore W2747487246C121864883 @default.
- W2747487246 hasConceptScore W2747487246C129844170 @default.
- W2747487246 hasConceptScore W2747487246C151730666 @default.
- W2747487246 hasConceptScore W2747487246C152365726 @default.
- W2747487246 hasConceptScore W2747487246C158448853 @default.
- W2747487246 hasConceptScore W2747487246C17020691 @default.
- W2747487246 hasConceptScore W2747487246C185592680 @default.
- W2747487246 hasConceptScore W2747487246C186769553 @default.
- W2747487246 hasConceptScore W2747487246C1893757 @default.
- W2747487246 hasConceptScore W2747487246C2524010 @default.
- W2747487246 hasConceptScore W2747487246C2779343474 @default.
- W2747487246 hasConceptScore W2747487246C28826006 @default.
- W2747487246 hasConceptScore W2747487246C33923547 @default.
- W2747487246 hasConceptScore W2747487246C41008148 @default.
- W2747487246 hasConceptScore W2747487246C55493867 @default.
- W2747487246 hasConceptScore W2747487246C62520636 @default.
- W2747487246 hasConceptScore W2747487246C86339819 @default.
- W2747487246 hasConceptScore W2747487246C86803240 @default.
- W2747487246 hasConceptScore W2747487246C9059619 @default.
- W2747487246 hasConceptScore W2747487246C99844830 @default.
- W2747487246 hasFunder F4320306076 @default.
- W2747487246 hasIssue "14" @default.
- W2747487246 hasLocation W27474872461 @default.
- W2747487246 hasLocation W27474872462 @default.
- W2747487246 hasLocation W27474872463 @default.
- W2747487246 hasLocation W27474872464 @default.
- W2747487246 hasOpenAccess W2747487246 @default.