Matches in SemOpenAlex for { <https://semopenalex.org/work/W2747530650> ?p ?o ?g. }
- W2747530650 endingPage "487" @default.
- W2747530650 startingPage "473" @default.
- W2747530650 abstract "Multiple Sclerosis (MS) could be considered as one of the most serious neurological diseases that can cause damage to the central nervous system. Such pathology has increased dramatically during the past few years. Hence, MS exploration has captivated the interest of various research studies in clinical as well as technological fields such as medical imaging. In this context, this paper introduced a new MS exploration approach based on cerebral segmentation and MS lesion identification using the fusion of magnetic resonance (MRI) modalities sequences. The proposed segmentation approach is based on extracted volumetric features that could be deduced from the gray-level co-occurrence matrix (GLCM) and the gray-level run length (GLRLM) matrix. Volumetric features extraction would be performed by using new voxel wise techniques while preserving connectivity, spatial and shape information. In addition, our segmentation approach includes an optimized feature selection process combining the genetic algorithm (GA) and the support vector machine (SVM) tool in order to preserve only the essential features that could distinguish the main brain tissues and the MS lesions within both white matter and gray matter. The evaluation was carried out on four clinical databases. The results revealed an acceptable conformity with the ground truths compared to those of the usual methods Besides, our approach has proved its ability to select the most discriminative features, ensuring an acceptable cerebral segmentation (averages: Dice = 0.62 ± 0.11, true positive rate ‘TPR’ = 0.64 ± 0.12 and positive predictive value ‘PPV’ = 0.64 ± 0.14) and MS lesions identification with an acceptable accuracy rate (averages: Dice = 0.66 ± 0.07, TPR = 0.70 ± 0.12 and PPV = 0.67 ± 0.03). Based on these promising results, a computer aided diagnosis (CAD) system was henceforth conceived and could be useful for clinicians in order to carefully facilitate MS exploration. Such a helpful CAD system was really highly needed for clinical explorations and could be extended to other neurological pathologies such as Alzheimer’s and Parkinson’s diseases." @default.
- W2747530650 created "2017-08-31" @default.
- W2747530650 creator A5004044106 @default.
- W2747530650 creator A5013277585 @default.
- W2747530650 creator A5018531632 @default.
- W2747530650 creator A5027139150 @default.
- W2747530650 creator A5031967892 @default.
- W2747530650 creator A5087333779 @default.
- W2747530650 date "2018-02-01" @default.
- W2747530650 modified "2023-10-17" @default.
- W2747530650 title "Multiple sclerosis exploration based on automatic MRI modalities segmentation approach with advanced volumetric evaluations for essential feature extraction" @default.
- W2747530650 cites W1971924430 @default.
- W2747530650 cites W1973457617 @default.
- W2747530650 cites W2014204016 @default.
- W2747530650 cites W2021204548 @default.
- W2747530650 cites W2027784493 @default.
- W2747530650 cites W2028094999 @default.
- W2747530650 cites W2044465660 @default.
- W2747530650 cites W2053607292 @default.
- W2747530650 cites W2056825100 @default.
- W2747530650 cites W2102848905 @default.
- W2747530650 cites W2117438495 @default.
- W2747530650 cites W2121219287 @default.
- W2747530650 cites W2127227873 @default.
- W2747530650 cites W2132513126 @default.
- W2747530650 cites W2136573752 @default.
- W2747530650 cites W2137676365 @default.
- W2747530650 cites W2146531642 @default.
- W2747530650 cites W2148347694 @default.
- W2747530650 cites W2150134853 @default.
- W2747530650 cites W2161913873 @default.
- W2747530650 cites W2168399612 @default.
- W2747530650 cites W2170750629 @default.
- W2747530650 cites W2213433683 @default.
- W2747530650 cites W2291395045 @default.
- W2747530650 cites W2575552683 @default.
- W2747530650 cites W2587577390 @default.
- W2747530650 doi "https://doi.org/10.1016/j.bspc.2017.07.008" @default.
- W2747530650 hasPublicationYear "2018" @default.
- W2747530650 type Work @default.
- W2747530650 sameAs 2747530650 @default.
- W2747530650 citedByCount "19" @default.
- W2747530650 countsByYear W27475306502017 @default.
- W2747530650 countsByYear W27475306502018 @default.
- W2747530650 countsByYear W27475306502019 @default.
- W2747530650 countsByYear W27475306502020 @default.
- W2747530650 countsByYear W27475306502021 @default.
- W2747530650 countsByYear W27475306502022 @default.
- W2747530650 countsByYear W27475306502023 @default.
- W2747530650 crossrefType "journal-article" @default.
- W2747530650 hasAuthorship W2747530650A5004044106 @default.
- W2747530650 hasAuthorship W2747530650A5013277585 @default.
- W2747530650 hasAuthorship W2747530650A5018531632 @default.
- W2747530650 hasAuthorship W2747530650A5027139150 @default.
- W2747530650 hasAuthorship W2747530650A5031967892 @default.
- W2747530650 hasAuthorship W2747530650A5087333779 @default.
- W2747530650 hasConcept C12267149 @default.
- W2747530650 hasConcept C126838900 @default.
- W2747530650 hasConcept C143409427 @default.
- W2747530650 hasConcept C151730666 @default.
- W2747530650 hasConcept C153180895 @default.
- W2747530650 hasConcept C154945302 @default.
- W2747530650 hasConcept C19609008 @default.
- W2747530650 hasConcept C2779343474 @default.
- W2747530650 hasConcept C2781192897 @default.
- W2747530650 hasConcept C41008148 @default.
- W2747530650 hasConcept C52622490 @default.
- W2747530650 hasConcept C54170458 @default.
- W2747530650 hasConcept C71924100 @default.
- W2747530650 hasConcept C86803240 @default.
- W2747530650 hasConcept C89600930 @default.
- W2747530650 hasConceptScore W2747530650C12267149 @default.
- W2747530650 hasConceptScore W2747530650C126838900 @default.
- W2747530650 hasConceptScore W2747530650C143409427 @default.
- W2747530650 hasConceptScore W2747530650C151730666 @default.
- W2747530650 hasConceptScore W2747530650C153180895 @default.
- W2747530650 hasConceptScore W2747530650C154945302 @default.
- W2747530650 hasConceptScore W2747530650C19609008 @default.
- W2747530650 hasConceptScore W2747530650C2779343474 @default.
- W2747530650 hasConceptScore W2747530650C2781192897 @default.
- W2747530650 hasConceptScore W2747530650C41008148 @default.
- W2747530650 hasConceptScore W2747530650C52622490 @default.
- W2747530650 hasConceptScore W2747530650C54170458 @default.
- W2747530650 hasConceptScore W2747530650C71924100 @default.
- W2747530650 hasConceptScore W2747530650C86803240 @default.
- W2747530650 hasConceptScore W2747530650C89600930 @default.
- W2747530650 hasLocation W27475306501 @default.
- W2747530650 hasOpenAccess W2747530650 @default.
- W2747530650 hasPrimaryLocation W27475306501 @default.
- W2747530650 hasRelatedWork W1998563493 @default.
- W2747530650 hasRelatedWork W2016533837 @default.
- W2747530650 hasRelatedWork W2082728368 @default.
- W2747530650 hasRelatedWork W2383143032 @default.
- W2747530650 hasRelatedWork W2892386716 @default.
- W2747530650 hasRelatedWork W3027020613 @default.
- W2747530650 hasRelatedWork W3167885074 @default.
- W2747530650 hasRelatedWork W4306164210 @default.
- W2747530650 hasRelatedWork W4313316311 @default.