Matches in SemOpenAlex for { <https://semopenalex.org/work/W2747776345> ?p ?o ?g. }
- W2747776345 endingPage "e1005637" @default.
- W2747776345 startingPage "e1005637" @default.
- W2747776345 abstract "Surgery is a therapeutic option for people with epilepsy whose seizures are not controlled by anti-epilepsy drugs. In pre-surgical planning, an array of data modalities, often including intra-cranial EEG, is used in an attempt to map regions of the brain thought to be crucial for the generation of seizures. These regions are then resected with the hope that the individual is rendered seizure free as a consequence. However, post-operative seizure freedom is currently sub-optimal, suggesting that the pre-surgical assessment may be improved by taking advantage of a mechanistic understanding of seizure generation in large brain networks. Herein we use mathematical models to uncover the relative contribution of regions of the brain to seizure generation and consequently which brain regions should be considered for resection. A critical advantage of this modeling approach is that the effect of different surgical strategies can be predicted and quantitatively compared in advance of surgery. Herein we seek to understand seizure generation in networks with different topologies and study how the removal of different nodes in these networks reduces the occurrence of seizures. Since this a computationally demanding problem, a first step for this aim is to facilitate tractability of this approach for large networks. To do this, we demonstrate that predictions arising from a neural mass model are preserved in a lower dimensional, canonical model that is quicker to simulate. We then use this simpler model to study the emergence of seizures in artificial networks with different topologies, and calculate which nodes should be removed to render the network seizure free. We find that for scale-free and rich-club networks there exist specific nodes that are critical for seizure generation and should therefore be removed, whereas for small-world networks the strategy should instead focus on removing sufficient brain tissue. We demonstrate the validity of our approach by analysing intra-cranial EEG recordings from a database comprising 16 patients who have undergone epilepsy surgery, revealing rich-club structures within the obtained functional networks. We show that the postsurgical outcome for these patients was better when a greater proportion of the rich club was removed, in agreement with our theoretical predictions." @default.
- W2747776345 created "2017-08-31" @default.
- W2747776345 creator A5000621191 @default.
- W2747776345 creator A5006851105 @default.
- W2747776345 creator A5015275083 @default.
- W2747776345 creator A5024052002 @default.
- W2747776345 creator A5037306185 @default.
- W2747776345 creator A5041903309 @default.
- W2747776345 creator A5064688706 @default.
- W2747776345 date "2017-08-17" @default.
- W2747776345 modified "2023-10-15" @default.
- W2747776345 title "An optimal strategy for epilepsy surgery: Disruption of the rich-club?" @default.
- W2747776345 cites W1560895878 @default.
- W2747776345 cites W1938812097 @default.
- W2747776345 cites W1965322550 @default.
- W2747776345 cites W1974026390 @default.
- W2747776345 cites W1974809694 @default.
- W2747776345 cites W1983485726 @default.
- W2747776345 cites W1985220467 @default.
- W2747776345 cites W1994341528 @default.
- W2747776345 cites W1999653836 @default.
- W2747776345 cites W2002388289 @default.
- W2747776345 cites W2003282853 @default.
- W2747776345 cites W2004297311 @default.
- W2747776345 cites W2006312249 @default.
- W2747776345 cites W2012559638 @default.
- W2747776345 cites W2014022174 @default.
- W2747776345 cites W2016854448 @default.
- W2747776345 cites W2019725905 @default.
- W2747776345 cites W2026916133 @default.
- W2747776345 cites W2035623830 @default.
- W2747776345 cites W2039892653 @default.
- W2747776345 cites W2040572095 @default.
- W2747776345 cites W2044113523 @default.
- W2747776345 cites W2044165415 @default.
- W2747776345 cites W2045724098 @default.
- W2747776345 cites W2052061512 @default.
- W2747776345 cites W2052215187 @default.
- W2747776345 cites W2052394872 @default.
- W2747776345 cites W2053100455 @default.
- W2747776345 cites W2061260677 @default.
- W2747776345 cites W2063233129 @default.
- W2747776345 cites W2063497316 @default.
- W2747776345 cites W2068765556 @default.
- W2747776345 cites W2070722739 @default.
- W2747776345 cites W2070765152 @default.
- W2747776345 cites W2071928207 @default.
- W2747776345 cites W2072413244 @default.
- W2747776345 cites W2073413866 @default.
- W2747776345 cites W2078327425 @default.
- W2747776345 cites W2079369992 @default.
- W2747776345 cites W2086728580 @default.
- W2747776345 cites W2088905367 @default.
- W2747776345 cites W2093362457 @default.
- W2747776345 cites W2096409350 @default.
- W2747776345 cites W2097982135 @default.
- W2747776345 cites W2105504969 @default.
- W2747776345 cites W2107974789 @default.
- W2747776345 cites W2111130146 @default.
- W2747776345 cites W2116925697 @default.
- W2747776345 cites W2126727507 @default.
- W2747776345 cites W2128314959 @default.
- W2747776345 cites W2130472282 @default.
- W2747776345 cites W2132363607 @default.
- W2747776345 cites W2136874658 @default.
- W2747776345 cites W2139403294 @default.
- W2747776345 cites W2153436764 @default.
- W2747776345 cites W2159501390 @default.
- W2747776345 cites W2160266360 @default.
- W2747776345 cites W2161460637 @default.
- W2747776345 cites W2164727176 @default.
- W2747776345 cites W2167822639 @default.
- W2747776345 cites W2170527455 @default.
- W2747776345 cites W2225595060 @default.
- W2747776345 cites W2331049399 @default.
- W2747776345 cites W2332725397 @default.
- W2747776345 cites W2473219140 @default.
- W2747776345 cites W3100130494 @default.
- W2747776345 cites W4245932665 @default.
- W2747776345 cites W4323913440 @default.
- W2747776345 doi "https://doi.org/10.1371/journal.pcbi.1005637" @default.
- W2747776345 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5560820" @default.
- W2747776345 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28817568" @default.
- W2747776345 hasPublicationYear "2017" @default.
- W2747776345 type Work @default.
- W2747776345 sameAs 2747776345 @default.
- W2747776345 citedByCount "75" @default.
- W2747776345 countsByYear W27477763452018 @default.
- W2747776345 countsByYear W27477763452019 @default.
- W2747776345 countsByYear W27477763452020 @default.
- W2747776345 countsByYear W27477763452021 @default.
- W2747776345 countsByYear W27477763452022 @default.
- W2747776345 countsByYear W27477763452023 @default.
- W2747776345 crossrefType "journal-article" @default.
- W2747776345 hasAuthorship W2747776345A5000621191 @default.
- W2747776345 hasAuthorship W2747776345A5006851105 @default.
- W2747776345 hasAuthorship W2747776345A5015275083 @default.
- W2747776345 hasAuthorship W2747776345A5024052002 @default.