Matches in SemOpenAlex for { <https://semopenalex.org/work/W2747984964> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2747984964 endingPage "3635" @default.
- W2747984964 startingPage "3623" @default.
- W2747984964 abstract "Scalable causal discovery is an essential technology to a wide spectrum of applications, including biomedical studies and social network evolution analysis. To tackle the difficulty of high dimensionality, a number of solutions are proposed in the literature, generally dividing the original variable domain into smaller subdomains by computation intensive partitioning strategies. These approaches usually suffer significant structural errors when the partitioning strategies fail to recognize true causal edges across the output subdomains. Such a structural error accumulates quickly with the growing depth of recursive partitioning, due to the lack of correction mechanism over causally connected variables when they are wrongly divided into two subdomains, finally jeopardizing the robustness of the integrated results. This paper proposes a completely different strategy to solve the problem, powered by a lightweight random partitioning scheme together with a carefully designed merging algorithm over results from the random partitions. Based on the randomness properties of the partitioning scheme, we design a suite of tricks for the merging algorithm, in order to support propagation-based significance enhancement, maximal acyclic subgraph causal ordering, and order-sensitive redundancy elimination. Theoretical studies as well as empirical evaluations verify the genericity, effectiveness, and scalability of our proposal on both simulated and real-world causal structures when the scheme is used in combination with a variety of causal solvers known effective on smaller domains." @default.
- W2747984964 created "2017-08-31" @default.
- W2747984964 creator A5011314280 @default.
- W2747984964 creator A5016673919 @default.
- W2747984964 creator A5049341927 @default.
- W2747984964 creator A5076948208 @default.
- W2747984964 date "2018-08-01" @default.
- W2747984964 modified "2023-10-18" @default.
- W2747984964 title "Sophisticated Merging Over Random Partitions: A Scalable and Robust Causal Discovery Approach" @default.
- W2747984964 cites W1975062332 @default.
- W2747984964 cites W2002251109 @default.
- W2747984964 cites W2031779765 @default.
- W2747984964 cites W2070562133 @default.
- W2747984964 cites W2072500816 @default.
- W2747984964 cites W2077316327 @default.
- W2747984964 cites W2087039607 @default.
- W2747984964 cites W2143891888 @default.
- W2747984964 cites W2147881172 @default.
- W2747984964 cites W2171408260 @default.
- W2747984964 cites W2186461911 @default.
- W2747984964 cites W2297288734 @default.
- W2747984964 cites W2324228145 @default.
- W2747984964 cites W2338033874 @default.
- W2747984964 cites W2347112004 @default.
- W2747984964 cites W811835876 @default.
- W2747984964 cites W830293142 @default.
- W2747984964 doi "https://doi.org/10.1109/tnnls.2017.2734804" @default.
- W2747984964 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28858816" @default.
- W2747984964 hasPublicationYear "2018" @default.
- W2747984964 type Work @default.
- W2747984964 sameAs 2747984964 @default.
- W2747984964 citedByCount "5" @default.
- W2747984964 countsByYear W27479849642018 @default.
- W2747984964 countsByYear W27479849642019 @default.
- W2747984964 countsByYear W27479849642021 @default.
- W2747984964 countsByYear W27479849642022 @default.
- W2747984964 crossrefType "journal-article" @default.
- W2747984964 hasAuthorship W2747984964A5011314280 @default.
- W2747984964 hasAuthorship W2747984964A5016673919 @default.
- W2747984964 hasAuthorship W2747984964A5049341927 @default.
- W2747984964 hasAuthorship W2747984964A5076948208 @default.
- W2747984964 hasConcept C104317684 @default.
- W2747984964 hasConcept C105795698 @default.
- W2747984964 hasConcept C111030470 @default.
- W2747984964 hasConcept C11413529 @default.
- W2747984964 hasConcept C125112378 @default.
- W2747984964 hasConcept C154945302 @default.
- W2747984964 hasConcept C185592680 @default.
- W2747984964 hasConcept C33923547 @default.
- W2747984964 hasConcept C41008148 @default.
- W2747984964 hasConcept C48044578 @default.
- W2747984964 hasConcept C55493867 @default.
- W2747984964 hasConcept C63479239 @default.
- W2747984964 hasConcept C74197172 @default.
- W2747984964 hasConcept C77088390 @default.
- W2747984964 hasConcept C80444323 @default.
- W2747984964 hasConceptScore W2747984964C104317684 @default.
- W2747984964 hasConceptScore W2747984964C105795698 @default.
- W2747984964 hasConceptScore W2747984964C111030470 @default.
- W2747984964 hasConceptScore W2747984964C11413529 @default.
- W2747984964 hasConceptScore W2747984964C125112378 @default.
- W2747984964 hasConceptScore W2747984964C154945302 @default.
- W2747984964 hasConceptScore W2747984964C185592680 @default.
- W2747984964 hasConceptScore W2747984964C33923547 @default.
- W2747984964 hasConceptScore W2747984964C41008148 @default.
- W2747984964 hasConceptScore W2747984964C48044578 @default.
- W2747984964 hasConceptScore W2747984964C55493867 @default.
- W2747984964 hasConceptScore W2747984964C63479239 @default.
- W2747984964 hasConceptScore W2747984964C74197172 @default.
- W2747984964 hasConceptScore W2747984964C77088390 @default.
- W2747984964 hasConceptScore W2747984964C80444323 @default.
- W2747984964 hasFunder F4320321001 @default.
- W2747984964 hasFunder F4320321921 @default.
- W2747984964 hasFunder F4320324202 @default.
- W2747984964 hasFunder F4320335377 @default.
- W2747984964 hasFunder F4320335480 @default.
- W2747984964 hasFunder F4320336213 @default.
- W2747984964 hasIssue "8" @default.
- W2747984964 hasLocation W27479849641 @default.
- W2747984964 hasLocation W27479849642 @default.
- W2747984964 hasOpenAccess W2747984964 @default.
- W2747984964 hasPrimaryLocation W27479849641 @default.
- W2747984964 hasRelatedWork W1525643724 @default.
- W2747984964 hasRelatedWork W1527726406 @default.
- W2747984964 hasRelatedWork W1976363619 @default.
- W2747984964 hasRelatedWork W2152859682 @default.
- W2747984964 hasRelatedWork W2302028273 @default.
- W2747984964 hasRelatedWork W2364921833 @default.
- W2747984964 hasRelatedWork W2382623646 @default.
- W2747984964 hasRelatedWork W2388030554 @default.
- W2747984964 hasRelatedWork W2999030035 @default.
- W2747984964 hasRelatedWork W3195467163 @default.
- W2747984964 hasVolume "29" @default.
- W2747984964 isParatext "false" @default.
- W2747984964 isRetracted "false" @default.
- W2747984964 magId "2747984964" @default.
- W2747984964 workType "article" @default.