Matches in SemOpenAlex for { <https://semopenalex.org/work/W2748151168> ?p ?o ?g. }
- W2748151168 endingPage "1" @default.
- W2748151168 startingPage "1" @default.
- W2748151168 abstract "Accurate automatic segmentation of the prostate in magnetic resonance images (MRI) is a challenging task due to the high variability of prostate anatomic structure. Artifacts such as noise and similar signal intensity of tissues around the prostate boundary inhibit traditional segmentation methods from achieving high accuracy. We investigate both patch-based and holistic (image-to-image) deep-learning methods for segmentation of the prostate. First, we introduce a patch-based convolutional network that aims to refine the prostate contour which provides an initialization. Second, we propose a method for end-to-end prostate segmentation by integrating holistically nested edge detection with fully convolutional networks. Holistically nested networks (HNN) automatically learn a hierarchical representation that can improve prostate boundary detection. Quantitative evaluation is performed on the MRI scans of 250 patients in fivefold cross-validation. The proposed enhanced HNN model achieves a mean ± standard deviation. A Dice similarity coefficient (DSC) of 89.77%±3.29% and a mean Jaccard similarity coefficient (IoU) of 81.59%±5.18% are used to calculate without trimming any end slices. The proposed holistic model significantly (p<0.001) outperforms a patch-based AlexNet model by 9% in DSC and 13% in IoU. Overall, the method achieves state-of-the-art performance as compared with other MRI prostate segmentation methods in the literature." @default.
- W2748151168 created "2017-08-31" @default.
- W2748151168 creator A5012641168 @default.
- W2748151168 creator A5016047550 @default.
- W2748151168 creator A5017236431 @default.
- W2748151168 creator A5020138295 @default.
- W2748151168 creator A5022455023 @default.
- W2748151168 creator A5032940257 @default.
- W2748151168 creator A5038850729 @default.
- W2748151168 creator A5042051713 @default.
- W2748151168 creator A5043710204 @default.
- W2748151168 creator A5045227579 @default.
- W2748151168 creator A5079582829 @default.
- W2748151168 creator A5082080836 @default.
- W2748151168 date "2017-08-21" @default.
- W2748151168 modified "2023-10-16" @default.
- W2748151168 title "Automatic magnetic resonance prostate segmentation by deep learning with holistically nested networks" @default.
- W2748151168 cites W127809959 @default.
- W2748151168 cites W1625590643 @default.
- W2748151168 cites W1909740415 @default.
- W2748151168 cites W1946635378 @default.
- W2748151168 cites W1980913318 @default.
- W2748151168 cites W1989298041 @default.
- W2748151168 cites W2052617496 @default.
- W2748151168 cites W2069637751 @default.
- W2748151168 cites W2106033751 @default.
- W2748151168 cites W2121782097 @default.
- W2748151168 cites W2141673231 @default.
- W2748151168 cites W2162424109 @default.
- W2748151168 cites W2211483859 @default.
- W2748151168 cites W2316200131 @default.
- W2748151168 cites W2323200062 @default.
- W2748151168 cites W2395611524 @default.
- W2748151168 cites W2470175974 @default.
- W2748151168 doi "https://doi.org/10.1117/1.jmi.4.4.041302" @default.
- W2748151168 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5565676" @default.
- W2748151168 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28840173" @default.
- W2748151168 hasPublicationYear "2017" @default.
- W2748151168 type Work @default.
- W2748151168 sameAs 2748151168 @default.
- W2748151168 citedByCount "49" @default.
- W2748151168 countsByYear W27481511682018 @default.
- W2748151168 countsByYear W27481511682019 @default.
- W2748151168 countsByYear W27481511682020 @default.
- W2748151168 countsByYear W27481511682021 @default.
- W2748151168 countsByYear W27481511682022 @default.
- W2748151168 countsByYear W27481511682023 @default.
- W2748151168 crossrefType "journal-article" @default.
- W2748151168 hasAuthorship W2748151168A5012641168 @default.
- W2748151168 hasAuthorship W2748151168A5016047550 @default.
- W2748151168 hasAuthorship W2748151168A5017236431 @default.
- W2748151168 hasAuthorship W2748151168A5020138295 @default.
- W2748151168 hasAuthorship W2748151168A5022455023 @default.
- W2748151168 hasAuthorship W2748151168A5032940257 @default.
- W2748151168 hasAuthorship W2748151168A5038850729 @default.
- W2748151168 hasAuthorship W2748151168A5042051713 @default.
- W2748151168 hasAuthorship W2748151168A5043710204 @default.
- W2748151168 hasAuthorship W2748151168A5045227579 @default.
- W2748151168 hasAuthorship W2748151168A5079582829 @default.
- W2748151168 hasAuthorship W2748151168A5082080836 @default.
- W2748151168 hasBestOaLocation W27481511682 @default.
- W2748151168 hasConcept C103278499 @default.
- W2748151168 hasConcept C108583219 @default.
- W2748151168 hasConcept C114466953 @default.
- W2748151168 hasConcept C115961682 @default.
- W2748151168 hasConcept C121608353 @default.
- W2748151168 hasConcept C124504099 @default.
- W2748151168 hasConcept C126322002 @default.
- W2748151168 hasConcept C126838900 @default.
- W2748151168 hasConcept C143409427 @default.
- W2748151168 hasConcept C153180895 @default.
- W2748151168 hasConcept C154945302 @default.
- W2748151168 hasConcept C163892561 @default.
- W2748151168 hasConcept C199360897 @default.
- W2748151168 hasConcept C203519979 @default.
- W2748151168 hasConcept C2776235491 @default.
- W2748151168 hasConcept C31972630 @default.
- W2748151168 hasConcept C41008148 @default.
- W2748151168 hasConcept C71924100 @default.
- W2748151168 hasConcept C81363708 @default.
- W2748151168 hasConcept C89600930 @default.
- W2748151168 hasConceptScore W2748151168C103278499 @default.
- W2748151168 hasConceptScore W2748151168C108583219 @default.
- W2748151168 hasConceptScore W2748151168C114466953 @default.
- W2748151168 hasConceptScore W2748151168C115961682 @default.
- W2748151168 hasConceptScore W2748151168C121608353 @default.
- W2748151168 hasConceptScore W2748151168C124504099 @default.
- W2748151168 hasConceptScore W2748151168C126322002 @default.
- W2748151168 hasConceptScore W2748151168C126838900 @default.
- W2748151168 hasConceptScore W2748151168C143409427 @default.
- W2748151168 hasConceptScore W2748151168C153180895 @default.
- W2748151168 hasConceptScore W2748151168C154945302 @default.
- W2748151168 hasConceptScore W2748151168C163892561 @default.
- W2748151168 hasConceptScore W2748151168C199360897 @default.
- W2748151168 hasConceptScore W2748151168C203519979 @default.
- W2748151168 hasConceptScore W2748151168C2776235491 @default.
- W2748151168 hasConceptScore W2748151168C31972630 @default.
- W2748151168 hasConceptScore W2748151168C41008148 @default.