Matches in SemOpenAlex for { <https://semopenalex.org/work/W2748696240> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2748696240 endingPage "197" @default.
- W2748696240 startingPage "187" @default.
- W2748696240 abstract "An online extreme learning machine (ELM) based modeling and optimization approach for point-by-point engine calibration is proposed to improve the efficiency of conventional model-based calibration approach. Instead of building hundreds of local engine models for every engine operating point, only one ELM model is necessary for the whole process. This ELM model is firstly constructed for a starting operating point, and calibration of this starting point is conducted by determining the optimal parameters of the model. This ELM model is then re-used as a base model for a nearby target operating point, and optimization is performed on the model to search for its best parameters. With a design of experiment strategy on the best parameters obtained, new measurements from the target operating point can be collected and used to update the model. By repeating the optimization and model update procedures, the optimal parameters for the target point can be found after several iterations. By using the model of this target point as the base model for another nearby operating point and repeating the same process again, calibration for all the operating points can be done online efficiently. The contribution of the proposed method is to save the number of experiments in the calibration process. To verify the effectiveness of the proposed approach, experiments on a commercial engine simulation software have been conducted. Three variants of online ELM are utilized in the model update process for comparison. The results show that engine calibration can be carried out with much fewer measurements and time using the proposed approach, and the initial training free online ELM is the most efficient online modeling method for this application." @default.
- W2748696240 created "2017-08-31" @default.
- W2748696240 creator A5006374930 @default.
- W2748696240 creator A5063490642 @default.
- W2748696240 creator A5074060793 @default.
- W2748696240 creator A5076922237 @default.
- W2748696240 date "2018-02-01" @default.
- W2748696240 modified "2023-09-30" @default.
- W2748696240 title "Online extreme learning machine based modeling and optimization for point-by-point engine calibration" @default.
- W2748696240 cites W1689378316 @default.
- W2748696240 cites W1966022471 @default.
- W2748696240 cites W2019268734 @default.
- W2748696240 cites W2026131661 @default.
- W2748696240 cites W2042593695 @default.
- W2748696240 cites W2052995937 @default.
- W2748696240 cites W2053424750 @default.
- W2748696240 cites W2063143152 @default.
- W2748696240 cites W2099579348 @default.
- W2748696240 cites W2107746155 @default.
- W2748696240 cites W2111072639 @default.
- W2748696240 cites W2141695047 @default.
- W2748696240 cites W2158054309 @default.
- W2748696240 cites W2283783041 @default.
- W2748696240 cites W430601014 @default.
- W2748696240 doi "https://doi.org/10.1016/j.neucom.2017.02.104" @default.
- W2748696240 hasPublicationYear "2018" @default.
- W2748696240 type Work @default.
- W2748696240 sameAs 2748696240 @default.
- W2748696240 citedByCount "20" @default.
- W2748696240 countsByYear W27486962402018 @default.
- W2748696240 countsByYear W27486962402019 @default.
- W2748696240 countsByYear W27486962402020 @default.
- W2748696240 countsByYear W27486962402021 @default.
- W2748696240 countsByYear W27486962402022 @default.
- W2748696240 countsByYear W27486962402023 @default.
- W2748696240 crossrefType "journal-article" @default.
- W2748696240 hasAuthorship W2748696240A5006374930 @default.
- W2748696240 hasAuthorship W2748696240A5063490642 @default.
- W2748696240 hasAuthorship W2748696240A5074060793 @default.
- W2748696240 hasAuthorship W2748696240A5076922237 @default.
- W2748696240 hasConcept C105795698 @default.
- W2748696240 hasConcept C111919701 @default.
- W2748696240 hasConcept C119599485 @default.
- W2748696240 hasConcept C127413603 @default.
- W2748696240 hasConcept C154945302 @default.
- W2748696240 hasConcept C165838908 @default.
- W2748696240 hasConcept C22762622 @default.
- W2748696240 hasConcept C2524010 @default.
- W2748696240 hasConcept C2780150128 @default.
- W2748696240 hasConcept C28719098 @default.
- W2748696240 hasConcept C33923547 @default.
- W2748696240 hasConcept C41008148 @default.
- W2748696240 hasConcept C50644808 @default.
- W2748696240 hasConcept C98045186 @default.
- W2748696240 hasConceptScore W2748696240C105795698 @default.
- W2748696240 hasConceptScore W2748696240C111919701 @default.
- W2748696240 hasConceptScore W2748696240C119599485 @default.
- W2748696240 hasConceptScore W2748696240C127413603 @default.
- W2748696240 hasConceptScore W2748696240C154945302 @default.
- W2748696240 hasConceptScore W2748696240C165838908 @default.
- W2748696240 hasConceptScore W2748696240C22762622 @default.
- W2748696240 hasConceptScore W2748696240C2524010 @default.
- W2748696240 hasConceptScore W2748696240C2780150128 @default.
- W2748696240 hasConceptScore W2748696240C28719098 @default.
- W2748696240 hasConceptScore W2748696240C33923547 @default.
- W2748696240 hasConceptScore W2748696240C41008148 @default.
- W2748696240 hasConceptScore W2748696240C50644808 @default.
- W2748696240 hasConceptScore W2748696240C98045186 @default.
- W2748696240 hasLocation W27486962401 @default.
- W2748696240 hasOpenAccess W2748696240 @default.
- W2748696240 hasPrimaryLocation W27486962401 @default.
- W2748696240 hasRelatedWork W1525510058 @default.
- W2748696240 hasRelatedWork W2564821309 @default.
- W2748696240 hasRelatedWork W2748696240 @default.
- W2748696240 hasRelatedWork W2888210060 @default.
- W2748696240 hasRelatedWork W3002504458 @default.
- W2748696240 hasRelatedWork W3088562397 @default.
- W2748696240 hasRelatedWork W3174207828 @default.
- W2748696240 hasRelatedWork W3189352981 @default.
- W2748696240 hasRelatedWork W4214884892 @default.
- W2748696240 hasRelatedWork W2012842278 @default.
- W2748696240 hasVolume "277" @default.
- W2748696240 isParatext "false" @default.
- W2748696240 isRetracted "false" @default.
- W2748696240 magId "2748696240" @default.
- W2748696240 workType "article" @default.