Matches in SemOpenAlex for { <https://semopenalex.org/work/W2748708820> ?p ?o ?g. }
- W2748708820 abstract "Abstract Heuristic Retrieval (HR) task aims to retrieve a set of documents from which the External Plagiarism detection identifies plagiarized pieces of text. In this context, we present Minmax Circular Sector Arcs (MinmaxCSA) algorithms that treats HR task as an approximate k-nearest neighbor search problem. Moreover, MinmaxCSA algorithms aim to retrieve the set of documents with greater amounts of plagiarized fragments, while reducing the amount of time to accomplish the HR task. Our theoretical framework is based on two aspects: (i) a triangular property to encode a range of sketches on a unique value; and (ii) a Circular Sector Arc property which enables (i) to be more accurate. Both properties were proposed for handling high-dimensional spaces, hashing them to a lower number of hash values. Our two MinmaxCSA methods, Minmax Circular Sector Arcs Lower Bound (CSAL) and Minmax Circular Sector Arcs Full Bound (CSA), achieved Recall levels slightly more imprecise than Minmaxwise hashing in exchange for a better Speedup in document indexing and query extraction and retrieval time in high-dimensional plagiarism-related datasets." @default.
- W2748708820 created "2017-08-31" @default.
- W2748708820 creator A5037442971 @default.
- W2748708820 creator A5063481815 @default.
- W2748708820 creator A5074689274 @default.
- W2748708820 date "2017-12-01" @default.
- W2748708820 modified "2023-09-24" @default.
- W2748708820 title "Minmax Circular Sector Arc for External Plagiarism’s Heuristic Retrieval stage" @default.
- W2748708820 cites W1019309611 @default.
- W2748708820 cites W1141215409 @default.
- W2748708820 cites W123495503 @default.
- W2748708820 cites W1502916507 @default.
- W2748708820 cites W1535423211 @default.
- W2748708820 cites W1536675587 @default.
- W2748708820 cites W1537505037 @default.
- W2748708820 cites W1544505227 @default.
- W2748708820 cites W1606626938 @default.
- W2748708820 cites W1660390307 @default.
- W2748708820 cites W1736726159 @default.
- W2748708820 cites W1967925097 @default.
- W2748708820 cites W1974336599 @default.
- W2748708820 cites W2003628203 @default.
- W2748708820 cites W2010433882 @default.
- W2748708820 cites W2020498246 @default.
- W2748708820 cites W2021469159 @default.
- W2748708820 cites W2027056760 @default.
- W2748708820 cites W2053017876 @default.
- W2748708820 cites W2055839530 @default.
- W2748708820 cites W2067393637 @default.
- W2748708820 cites W2069644548 @default.
- W2748708820 cites W207273375 @default.
- W2748708820 cites W2073880961 @default.
- W2748708820 cites W2081193615 @default.
- W2748708820 cites W2097865464 @default.
- W2748708820 cites W2098529993 @default.
- W2748708820 cites W2109034006 @default.
- W2748708820 cites W2124064358 @default.
- W2748708820 cites W2131752763 @default.
- W2748708820 cites W2132069633 @default.
- W2748708820 cites W2147717514 @default.
- W2748708820 cites W2147742901 @default.
- W2748708820 cites W2165612380 @default.
- W2748708820 cites W2176150727 @default.
- W2748708820 cites W2277931188 @default.
- W2748708820 cites W2296515788 @default.
- W2748708820 cites W2306767659 @default.
- W2748708820 cites W2343777367 @default.
- W2748708820 cites W2512066066 @default.
- W2748708820 cites W2544652339 @default.
- W2748708820 cites W2566373727 @default.
- W2748708820 cites W86855850 @default.
- W2748708820 cites W2112890327 @default.
- W2748708820 doi "https://doi.org/10.1016/j.knosys.2017.08.013" @default.
- W2748708820 hasPublicationYear "2017" @default.
- W2748708820 type Work @default.
- W2748708820 sameAs 2748708820 @default.
- W2748708820 citedByCount "2" @default.
- W2748708820 countsByYear W27487088202019 @default.
- W2748708820 countsByYear W27487088202022 @default.
- W2748708820 crossrefType "journal-article" @default.
- W2748708820 hasAuthorship W2748708820A5037442971 @default.
- W2748708820 hasAuthorship W2748708820A5063481815 @default.
- W2748708820 hasAuthorship W2748708820A5074689274 @default.
- W2748708820 hasConcept C11413529 @default.
- W2748708820 hasConcept C126255220 @default.
- W2748708820 hasConcept C149728462 @default.
- W2748708820 hasConcept C151730666 @default.
- W2748708820 hasConcept C154945302 @default.
- W2748708820 hasConcept C162324750 @default.
- W2748708820 hasConcept C173608175 @default.
- W2748708820 hasConcept C173801870 @default.
- W2748708820 hasConcept C177264268 @default.
- W2748708820 hasConcept C187736073 @default.
- W2748708820 hasConcept C199360897 @default.
- W2748708820 hasConcept C23123220 @default.
- W2748708820 hasConcept C2779343474 @default.
- W2748708820 hasConcept C2780451532 @default.
- W2748708820 hasConcept C33923547 @default.
- W2748708820 hasConcept C38652104 @default.
- W2748708820 hasConcept C41008148 @default.
- W2748708820 hasConcept C68339613 @default.
- W2748708820 hasConcept C75165309 @default.
- W2748708820 hasConcept C80444323 @default.
- W2748708820 hasConcept C86803240 @default.
- W2748708820 hasConcept C99138194 @default.
- W2748708820 hasConceptScore W2748708820C11413529 @default.
- W2748708820 hasConceptScore W2748708820C126255220 @default.
- W2748708820 hasConceptScore W2748708820C149728462 @default.
- W2748708820 hasConceptScore W2748708820C151730666 @default.
- W2748708820 hasConceptScore W2748708820C154945302 @default.
- W2748708820 hasConceptScore W2748708820C162324750 @default.
- W2748708820 hasConceptScore W2748708820C173608175 @default.
- W2748708820 hasConceptScore W2748708820C173801870 @default.
- W2748708820 hasConceptScore W2748708820C177264268 @default.
- W2748708820 hasConceptScore W2748708820C187736073 @default.
- W2748708820 hasConceptScore W2748708820C199360897 @default.
- W2748708820 hasConceptScore W2748708820C23123220 @default.
- W2748708820 hasConceptScore W2748708820C2779343474 @default.
- W2748708820 hasConceptScore W2748708820C2780451532 @default.
- W2748708820 hasConceptScore W2748708820C33923547 @default.