Matches in SemOpenAlex for { <https://semopenalex.org/work/W2748902594> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2748902594 endingPage "396" @default.
- W2748902594 startingPage "389" @default.
- W2748902594 abstract "The electrocardiogram (ECG) is a standard test used to monitor the activity of the heart. Many cardiac abnormalities will be manifested in the ECG including arrhythmia which is a general term that refers to an abnormal heart rhythm. The basis of arrhythmia diagnosis is the identification of normal versus abnormal individual heart beats, and their correct classification into different diagnoses, based on ECG morphology. Heartbeats can be sub-divided into five categories namely non-ectopic, supraventricular ectopic, ventricular ectopic, fusion, and unknown beats. It is challenging and time-consuming to distinguish these heartbeats on ECG as these signals are typically corrupted by noise. We developed a 9-layer deep convolutional neural network (CNN) to automatically identify 5 different categories of heartbeats in ECG signals. Our experiment was conducted in original and noise attenuated sets of ECG signals derived from a publicly available database. This set was artificially augmented to even out the number of instances the 5 classes of heartbeats and filtered to remove high-frequency noise. The CNN was trained using the augmented data and achieved an accuracy of 94.03% and 93.47% in the diagnostic classification of heartbeats in original and noise free ECGs, respectively. When the CNN was trained with highly imbalanced data (original dataset), the accuracy of the CNN reduced to 89.07%% and 89.3% in noisy and noise-free ECGs. When properly trained, the proposed CNN model can serve as a tool for screening of ECG to quickly identify different types and frequency of arrhythmic heartbeats." @default.
- W2748902594 created "2017-08-31" @default.
- W2748902594 creator A5012620880 @default.
- W2748902594 creator A5038193624 @default.
- W2748902594 creator A5045783666 @default.
- W2748902594 creator A5072339586 @default.
- W2748902594 creator A5077976730 @default.
- W2748902594 creator A5082588672 @default.
- W2748902594 creator A5089613770 @default.
- W2748902594 date "2017-10-01" @default.
- W2748902594 modified "2023-10-16" @default.
- W2748902594 title "A deep convolutional neural network model to classify heartbeats" @default.
- W2748902594 cites W1677182931 @default.
- W2748902594 cites W1968983915 @default.
- W2748902594 cites W1975640002 @default.
- W2748902594 cites W2045867791 @default.
- W2748902594 cites W2062014239 @default.
- W2748902594 cites W2063921320 @default.
- W2748902594 cites W2063923412 @default.
- W2748902594 cites W2072918376 @default.
- W2748902594 cites W2076063813 @default.
- W2748902594 cites W2087655457 @default.
- W2748902594 cites W2117736816 @default.
- W2748902594 cites W2140920882 @default.
- W2748902594 cites W2160986881 @default.
- W2748902594 cites W2162273778 @default.
- W2748902594 cites W2162800060 @default.
- W2748902594 cites W2168816777 @default.
- W2748902594 cites W2482102801 @default.
- W2748902594 cites W2527796983 @default.
- W2748902594 cites W2598525681 @default.
- W2748902594 cites W2605056515 @default.
- W2748902594 cites W2702116941 @default.
- W2748902594 cites W2919115771 @default.
- W2748902594 doi "https://doi.org/10.1016/j.compbiomed.2017.08.022" @default.
- W2748902594 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28869899" @default.
- W2748902594 hasPublicationYear "2017" @default.
- W2748902594 type Work @default.
- W2748902594 sameAs 2748902594 @default.
- W2748902594 citedByCount "842" @default.
- W2748902594 countsByYear W27489025942017 @default.
- W2748902594 countsByYear W27489025942018 @default.
- W2748902594 countsByYear W27489025942019 @default.
- W2748902594 countsByYear W27489025942020 @default.
- W2748902594 countsByYear W27489025942021 @default.
- W2748902594 countsByYear W27489025942022 @default.
- W2748902594 countsByYear W27489025942023 @default.
- W2748902594 crossrefType "journal-article" @default.
- W2748902594 hasAuthorship W2748902594A5012620880 @default.
- W2748902594 hasAuthorship W2748902594A5038193624 @default.
- W2748902594 hasAuthorship W2748902594A5045783666 @default.
- W2748902594 hasAuthorship W2748902594A5072339586 @default.
- W2748902594 hasAuthorship W2748902594A5077976730 @default.
- W2748902594 hasAuthorship W2748902594A5082588672 @default.
- W2748902594 hasAuthorship W2748902594A5089613770 @default.
- W2748902594 hasConcept C108583219 @default.
- W2748902594 hasConcept C115961682 @default.
- W2748902594 hasConcept C126838900 @default.
- W2748902594 hasConcept C153180895 @default.
- W2748902594 hasConcept C154945302 @default.
- W2748902594 hasConcept C41008148 @default.
- W2748902594 hasConcept C534262118 @default.
- W2748902594 hasConcept C71924100 @default.
- W2748902594 hasConcept C81363708 @default.
- W2748902594 hasConcept C99498987 @default.
- W2748902594 hasConceptScore W2748902594C108583219 @default.
- W2748902594 hasConceptScore W2748902594C115961682 @default.
- W2748902594 hasConceptScore W2748902594C126838900 @default.
- W2748902594 hasConceptScore W2748902594C153180895 @default.
- W2748902594 hasConceptScore W2748902594C154945302 @default.
- W2748902594 hasConceptScore W2748902594C41008148 @default.
- W2748902594 hasConceptScore W2748902594C534262118 @default.
- W2748902594 hasConceptScore W2748902594C71924100 @default.
- W2748902594 hasConceptScore W2748902594C81363708 @default.
- W2748902594 hasConceptScore W2748902594C99498987 @default.
- W2748902594 hasLocation W27489025941 @default.
- W2748902594 hasLocation W27489025942 @default.
- W2748902594 hasOpenAccess W2748902594 @default.
- W2748902594 hasPrimaryLocation W27489025941 @default.
- W2748902594 hasRelatedWork W2731899572 @default.
- W2748902594 hasRelatedWork W2732542196 @default.
- W2748902594 hasRelatedWork W2738221750 @default.
- W2748902594 hasRelatedWork W3116150086 @default.
- W2748902594 hasRelatedWork W3133861977 @default.
- W2748902594 hasRelatedWork W3156786002 @default.
- W2748902594 hasRelatedWork W4200173597 @default.
- W2748902594 hasRelatedWork W4312417841 @default.
- W2748902594 hasRelatedWork W4321369474 @default.
- W2748902594 hasRelatedWork W564581980 @default.
- W2748902594 hasVolume "89" @default.
- W2748902594 isParatext "false" @default.
- W2748902594 isRetracted "false" @default.
- W2748902594 magId "2748902594" @default.
- W2748902594 workType "article" @default.