Matches in SemOpenAlex for { <https://semopenalex.org/work/W2749020828> ?p ?o ?g. }
- W2749020828 endingPage "75126" @default.
- W2749020828 startingPage "75114" @default.
- W2749020828 abstract "// Changyu Jiang 1, * , Mingzhu Zhai 2, * , Dong Yan 1 , Da Li 3 , Chen Li 4 , Yonghong Zhang 4 , Lizu Xiao 1 , Donglin Xiong 1 , Qiwen Deng 5 and Wuping Sun 1 1 Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The Affiliated Nanshan People’s Hospital of Shenzhen University, Shenzhen Municipal Sixth People’s Hospital, Shenzhen 518060, China 2 Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria 3 Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China 4 Laboratory of Medicinal Plant, School of Basic Medicine, Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Hubei 442000, China 5 Department of Infectious Diseases and Shenzhen Municipal Key Laboratory for Endogenous Infection, The Affiliated Nanshan People’s Hospital of Shenzhen University, Shenzhen Municipal Sixth People’s Hospital, Shenzhen 518060, China * These authors have contributed equally to this work Correspondence to: Wuping Sun, email: wuping.sun@foxmail.com Keywords: WAT, beige adipocytes, thermogenesis, browning, obesity Received: January 31, 2017 Accepted: July 29, 2017 Published: August 24, 2017 ABSTRACT Beige adipocytes are a new type of recruitable brownish adipocytes, with highly mitochondrial membrane uncoupling protein 1 expression and thermogenesis. Beige adipocytes were found among white adipocytes, especially in subcutaneous white adipose tissue (sWAT). Therefore, beige adipocytes may be involved in the regulation of energy metabolism and fat deposition. Transient receptor potential melastatin 8 (TRPM8), a Ca 2+ -permeable non-selective cation channel, plays vital roles in the regulation of various cellular functions. It has been reported that TRPM8 activation enhanced the thermogenic function of brown adiposytes. However, the involvement of TRPM8 in the thermogenic function of WAT remains unexplored. Our data revealed that TRPM8 was expressed in mouse white adipocytes at mRNA, protein and functional levels. The mRNA expression of Trpm8 was significantly increased in the differentiated white adipocytes than pre-adipocytes. Moreover, activation of TRPM8 by menthol enhanced the expression of thermogenic genes in cultured white aidpocytes. And menthol-induced increases of the thermogenic genes in white adipocytes was inhibited by either KT5720 (a protein kinase A inhibitor) or BAPTA-AM. In addition, high fat diet (HFD)-induced obesity in mice was significantly recovered by co-treatment with menthol. Dietary menthol enhanced WAT “browning” and improved glucose metabolism in HFD-induced obesity mice as well. Therefore, we concluded that TRPM8 might be involved in WAT “browning” by increasing the expression levels of genes related to thermogenesis and energy metabolism. And dietary menthol could be a novel approach for combating human obesity and related metabolic diseases." @default.
- W2749020828 created "2017-08-31" @default.
- W2749020828 creator A5005368563 @default.
- W2749020828 creator A5022004204 @default.
- W2749020828 creator A5023129207 @default.
- W2749020828 creator A5032447166 @default.
- W2749020828 creator A5042170464 @default.
- W2749020828 creator A5048503739 @default.
- W2749020828 creator A5068947466 @default.
- W2749020828 creator A5075250772 @default.
- W2749020828 creator A5089145537 @default.
- W2749020828 creator A5089281256 @default.
- W2749020828 date "2017-08-24" @default.
- W2749020828 modified "2023-10-12" @default.
- W2749020828 title "Dietary menthol-induced TRPM8 activation enhances WAT “browning” and ameliorates diet-induced obesity" @default.
- W2749020828 cites W1485297825 @default.
- W2749020828 cites W1511198581 @default.
- W2749020828 cites W1964159573 @default.
- W2749020828 cites W1968817279 @default.
- W2749020828 cites W1969239687 @default.
- W2749020828 cites W1975332997 @default.
- W2749020828 cites W1981525131 @default.
- W2749020828 cites W1987613834 @default.
- W2749020828 cites W1989046230 @default.
- W2749020828 cites W1993943676 @default.
- W2749020828 cites W1995330222 @default.
- W2749020828 cites W1998467441 @default.
- W2749020828 cites W1998696106 @default.
- W2749020828 cites W2007885739 @default.
- W2749020828 cites W2017373278 @default.
- W2749020828 cites W2020693481 @default.
- W2749020828 cites W2027753197 @default.
- W2749020828 cites W2033159113 @default.
- W2749020828 cites W2036145275 @default.
- W2749020828 cites W2044026699 @default.
- W2749020828 cites W2053809576 @default.
- W2749020828 cites W2065261838 @default.
- W2749020828 cites W2067195871 @default.
- W2749020828 cites W2073293904 @default.
- W2749020828 cites W2076503188 @default.
- W2749020828 cites W2084785273 @default.
- W2749020828 cites W2088450431 @default.
- W2749020828 cites W2092166214 @default.
- W2749020828 cites W2097203581 @default.
- W2749020828 cites W2098243284 @default.
- W2749020828 cites W2100784798 @default.
- W2749020828 cites W2107057154 @default.
- W2749020828 cites W2107705149 @default.
- W2749020828 cites W2114821999 @default.
- W2749020828 cites W2118614496 @default.
- W2749020828 cites W2122778205 @default.
- W2749020828 cites W2123608334 @default.
- W2749020828 cites W2126229620 @default.
- W2749020828 cites W2132358997 @default.
- W2749020828 cites W2151064573 @default.
- W2749020828 cites W2161355957 @default.
- W2749020828 cites W2161965097 @default.
- W2749020828 cites W2164659462 @default.
- W2749020828 cites W2170651583 @default.
- W2749020828 cites W2256160593 @default.
- W2749020828 cites W2429729913 @default.
- W2749020828 cites W2514938576 @default.
- W2749020828 cites W89817315 @default.
- W2749020828 doi "https://doi.org/10.18632/oncotarget.20540" @default.
- W2749020828 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5650405" @default.
- W2749020828 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29088850" @default.
- W2749020828 hasPublicationYear "2017" @default.
- W2749020828 type Work @default.
- W2749020828 sameAs 2749020828 @default.
- W2749020828 citedByCount "45" @default.
- W2749020828 countsByYear W27490208282018 @default.
- W2749020828 countsByYear W27490208282019 @default.
- W2749020828 countsByYear W27490208282020 @default.
- W2749020828 countsByYear W27490208282021 @default.
- W2749020828 countsByYear W27490208282022 @default.
- W2749020828 countsByYear W27490208282023 @default.
- W2749020828 crossrefType "journal-article" @default.
- W2749020828 hasAuthorship W2749020828A5005368563 @default.
- W2749020828 hasAuthorship W2749020828A5022004204 @default.
- W2749020828 hasAuthorship W2749020828A5023129207 @default.
- W2749020828 hasAuthorship W2749020828A5032447166 @default.
- W2749020828 hasAuthorship W2749020828A5042170464 @default.
- W2749020828 hasAuthorship W2749020828A5048503739 @default.
- W2749020828 hasAuthorship W2749020828A5068947466 @default.
- W2749020828 hasAuthorship W2749020828A5075250772 @default.
- W2749020828 hasAuthorship W2749020828A5089145537 @default.
- W2749020828 hasAuthorship W2749020828A5089281256 @default.
- W2749020828 hasBestOaLocation W27490208281 @default.
- W2749020828 hasConcept C126322002 @default.
- W2749020828 hasConcept C142724271 @default.
- W2749020828 hasConcept C17744445 @default.
- W2749020828 hasConcept C188947578 @default.
- W2749020828 hasConcept C191935318 @default.
- W2749020828 hasConcept C199539241 @default.
- W2749020828 hasConcept C204787440 @default.
- W2749020828 hasConcept C42407357 @default.
- W2749020828 hasConcept C511355011 @default.
- W2749020828 hasConcept C556039675 @default.