Matches in SemOpenAlex for { <https://semopenalex.org/work/W2749203358> ?p ?o ?g. }
- W2749203358 abstract "We propose Quadruplet Convolutional Neural Networks (Quad-CNN) for multi-object tracking, which learn to associate object detections across frames using quadruplet losses. The proposed networks consider target appearances together with their temporal adjacencies for data association. Unlike conventional ranking losses, the quadruplet loss enforces an additional constraint that makes temporally adjacent detections more closely located than the ones with large temporal gaps. We also employ a multi-task loss to jointly learn object association and bounding box regression for better localization. The whole network is trained end-to-end. For tracking, the target association is performed by minimax label propagation using the metric learned from the proposed network. We evaluate performance of our multi-object tracking algorithm on public MOT Challenge datasets, and achieve outstanding results." @default.
- W2749203358 created "2017-08-31" @default.
- W2749203358 creator A5006594639 @default.
- W2749203358 creator A5021288266 @default.
- W2749203358 creator A5029609597 @default.
- W2749203358 creator A5087650565 @default.
- W2749203358 date "2017-07-01" @default.
- W2749203358 modified "2023-10-13" @default.
- W2749203358 title "Multi-object Tracking with Quadruplet Convolutional Neural Networks" @default.
- W2749203358 cites W1531192956 @default.
- W2749203358 cites W1536680647 @default.
- W2749203358 cites W1745334888 @default.
- W2749203358 cites W1857884451 @default.
- W2749203358 cites W1903029394 @default.
- W2749203358 cites W1975517671 @default.
- W2749203358 cites W1987118352 @default.
- W2749203358 cites W2007352603 @default.
- W2749203358 cites W2016135469 @default.
- W2749203358 cites W2020209171 @default.
- W2749203358 cites W2083732757 @default.
- W2749203358 cites W2097117768 @default.
- W2749203358 cites W2111644456 @default.
- W2749203358 cites W2125556102 @default.
- W2749203358 cites W2127084114 @default.
- W2749203358 cites W2134529534 @default.
- W2749203358 cites W2145287260 @default.
- W2749203358 cites W2155893237 @default.
- W2749203358 cites W2157364932 @default.
- W2749203358 cites W2168356304 @default.
- W2749203358 cites W2171243491 @default.
- W2749203358 cites W2171590421 @default.
- W2749203358 cites W219040644 @default.
- W2749203358 cites W2194775991 @default.
- W2749203358 cites W2209193152 @default.
- W2749203358 cites W2225887246 @default.
- W2749203358 cites W2237765446 @default.
- W2749203358 cites W2252862078 @default.
- W2749203358 cites W2343841668 @default.
- W2749203358 cites W2408241409 @default.
- W2749203358 cites W2467139031 @default.
- W2749203358 cites W2477869242 @default.
- W2749203358 cites W2510977782 @default.
- W2749203358 cites W2520234541 @default.
- W2749203358 cites W2539157762 @default.
- W2749203358 cites W2547098537 @default.
- W2749203358 cites W2548601959 @default.
- W2749203358 cites W2555375762 @default.
- W2749203358 cites W2737572441 @default.
- W2749203358 cites W2963026686 @default.
- W2749203358 cites W2963775347 @default.
- W2749203358 cites W2964015640 @default.
- W2749203358 cites W2964189431 @default.
- W2749203358 cites W3099206234 @default.
- W2749203358 cites W764651262 @default.
- W2749203358 doi "https://doi.org/10.1109/cvpr.2017.403" @default.
- W2749203358 hasPublicationYear "2017" @default.
- W2749203358 type Work @default.
- W2749203358 sameAs 2749203358 @default.
- W2749203358 citedByCount "207" @default.
- W2749203358 countsByYear W27492033582018 @default.
- W2749203358 countsByYear W27492033582019 @default.
- W2749203358 countsByYear W27492033582020 @default.
- W2749203358 countsByYear W27492033582021 @default.
- W2749203358 countsByYear W27492033582022 @default.
- W2749203358 countsByYear W27492033582023 @default.
- W2749203358 crossrefType "proceedings-article" @default.
- W2749203358 hasAuthorship W2749203358A5006594639 @default.
- W2749203358 hasAuthorship W2749203358A5021288266 @default.
- W2749203358 hasAuthorship W2749203358A5029609597 @default.
- W2749203358 hasAuthorship W2749203358A5087650565 @default.
- W2749203358 hasConcept C111472728 @default.
- W2749203358 hasConcept C115961682 @default.
- W2749203358 hasConcept C138885662 @default.
- W2749203358 hasConcept C142853389 @default.
- W2749203358 hasConcept C147037132 @default.
- W2749203358 hasConcept C153180895 @default.
- W2749203358 hasConcept C154945302 @default.
- W2749203358 hasConcept C15744967 @default.
- W2749203358 hasConcept C162324750 @default.
- W2749203358 hasConcept C176217482 @default.
- W2749203358 hasConcept C189430467 @default.
- W2749203358 hasConcept C19417346 @default.
- W2749203358 hasConcept C202474056 @default.
- W2749203358 hasConcept C21547014 @default.
- W2749203358 hasConcept C2524010 @default.
- W2749203358 hasConcept C2775936607 @default.
- W2749203358 hasConcept C2776036281 @default.
- W2749203358 hasConcept C2776151529 @default.
- W2749203358 hasConcept C2781238097 @default.
- W2749203358 hasConcept C31972630 @default.
- W2749203358 hasConcept C33923547 @default.
- W2749203358 hasConcept C41008148 @default.
- W2749203358 hasConcept C50644808 @default.
- W2749203358 hasConcept C63584917 @default.
- W2749203358 hasConcept C81363708 @default.
- W2749203358 hasConceptScore W2749203358C111472728 @default.
- W2749203358 hasConceptScore W2749203358C115961682 @default.
- W2749203358 hasConceptScore W2749203358C138885662 @default.
- W2749203358 hasConceptScore W2749203358C142853389 @default.
- W2749203358 hasConceptScore W2749203358C147037132 @default.