Matches in SemOpenAlex for { <https://semopenalex.org/work/W2749209900> ?p ?o ?g. }
- W2749209900 endingPage "65" @default.
- W2749209900 startingPage "57" @default.
- W2749209900 abstract "A novel measure of neural spike train randomness, an entropy factor, is proposed. It is based on the Shannon entropy of the number of spikes in a time window and can be seen as an analogy to the Fano factor. Theoretical properties of the new measure are studied for equilibrium renewal processes and further illustrated on gamma and inverse Gaussian probability distributions of interspike intervals. Finally, the entropy factor is evaluated from the experimental records of spontaneous activity in macaque primary visual cortex and compared to its theoretical behavior deduced for the renewal process models. Both theoretical and experimental results show substantial differences between the Fano and entropy factors. Rather paradoxically, an increase in the variability of spike count is often accompanied by an increase of its predictability, as evidenced by the entropy factor." @default.
- W2749209900 created "2017-08-31" @default.
- W2749209900 creator A5042670068 @default.
- W2749209900 creator A5054713013 @default.
- W2749209900 creator A5082937870 @default.
- W2749209900 date "2017-11-01" @default.
- W2749209900 modified "2023-09-25" @default.
- W2749209900 title "Entropy factor for randomness quantification in neuronal data" @default.
- W2749209900 cites W1599761710 @default.
- W2749209900 cites W1841807818 @default.
- W2749209900 cites W1963988445 @default.
- W2749209900 cites W1968317750 @default.
- W2749209900 cites W1969264030 @default.
- W2749209900 cites W1974719952 @default.
- W2749209900 cites W1997755397 @default.
- W2749209900 cites W2003773498 @default.
- W2749209900 cites W2012546374 @default.
- W2749209900 cites W2013160100 @default.
- W2749209900 cites W2017734404 @default.
- W2749209900 cites W2027173466 @default.
- W2749209900 cites W2032504977 @default.
- W2749209900 cites W2035645686 @default.
- W2749209900 cites W2055476548 @default.
- W2749209900 cites W2056645762 @default.
- W2749209900 cites W2056899845 @default.
- W2749209900 cites W2088141169 @default.
- W2749209900 cites W2088253609 @default.
- W2749209900 cites W2095224699 @default.
- W2749209900 cites W2103604224 @default.
- W2749209900 cites W2109584604 @default.
- W2749209900 cites W2112051501 @default.
- W2749209900 cites W2112136490 @default.
- W2749209900 cites W2135852493 @default.
- W2749209900 cites W2136980002 @default.
- W2749209900 cites W2137283114 @default.
- W2749209900 cites W2146797675 @default.
- W2749209900 cites W2149163831 @default.
- W2749209900 cites W2152119945 @default.
- W2749209900 cites W2314979610 @default.
- W2749209900 cites W2320534604 @default.
- W2749209900 cites W2322269061 @default.
- W2749209900 cites W2323306929 @default.
- W2749209900 cites W2330058543 @default.
- W2749209900 cites W2417826379 @default.
- W2749209900 cites W3103179420 @default.
- W2749209900 doi "https://doi.org/10.1016/j.neunet.2017.07.016" @default.
- W2749209900 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28888132" @default.
- W2749209900 hasPublicationYear "2017" @default.
- W2749209900 type Work @default.
- W2749209900 sameAs 2749209900 @default.
- W2749209900 citedByCount "11" @default.
- W2749209900 countsByYear W27492099002018 @default.
- W2749209900 countsByYear W27492099002020 @default.
- W2749209900 countsByYear W27492099002021 @default.
- W2749209900 countsByYear W27492099002022 @default.
- W2749209900 countsByYear W27492099002023 @default.
- W2749209900 crossrefType "journal-article" @default.
- W2749209900 hasAuthorship W2749209900A5042670068 @default.
- W2749209900 hasAuthorship W2749209900A5054713013 @default.
- W2749209900 hasAuthorship W2749209900A5082937870 @default.
- W2749209900 hasBestOaLocation W27492099001 @default.
- W2749209900 hasConcept C105795698 @default.
- W2749209900 hasConcept C106301342 @default.
- W2749209900 hasConcept C106752470 @default.
- W2749209900 hasConcept C121332964 @default.
- W2749209900 hasConcept C121864883 @default.
- W2749209900 hasConcept C125112378 @default.
- W2749209900 hasConcept C125252325 @default.
- W2749209900 hasConcept C163716315 @default.
- W2749209900 hasConcept C182049051 @default.
- W2749209900 hasConcept C197640229 @default.
- W2749209900 hasConcept C31814641 @default.
- W2749209900 hasConcept C33923547 @default.
- W2749209900 hasConcept C41008148 @default.
- W2749209900 hasConcept C42047476 @default.
- W2749209900 hasConcept C60507348 @default.
- W2749209900 hasConcept C62520636 @default.
- W2749209900 hasConcept C72659945 @default.
- W2749209900 hasConcept C76155785 @default.
- W2749209900 hasConcept C94915269 @default.
- W2749209900 hasConcept C9679016 @default.
- W2749209900 hasConceptScore W2749209900C105795698 @default.
- W2749209900 hasConceptScore W2749209900C106301342 @default.
- W2749209900 hasConceptScore W2749209900C106752470 @default.
- W2749209900 hasConceptScore W2749209900C121332964 @default.
- W2749209900 hasConceptScore W2749209900C121864883 @default.
- W2749209900 hasConceptScore W2749209900C125112378 @default.
- W2749209900 hasConceptScore W2749209900C125252325 @default.
- W2749209900 hasConceptScore W2749209900C163716315 @default.
- W2749209900 hasConceptScore W2749209900C182049051 @default.
- W2749209900 hasConceptScore W2749209900C197640229 @default.
- W2749209900 hasConceptScore W2749209900C31814641 @default.
- W2749209900 hasConceptScore W2749209900C33923547 @default.
- W2749209900 hasConceptScore W2749209900C41008148 @default.
- W2749209900 hasConceptScore W2749209900C42047476 @default.
- W2749209900 hasConceptScore W2749209900C60507348 @default.
- W2749209900 hasConceptScore W2749209900C62520636 @default.
- W2749209900 hasConceptScore W2749209900C72659945 @default.