Matches in SemOpenAlex for { <https://semopenalex.org/work/W274926194> ?p ?o ?g. }
- W274926194 endingPage "83" @default.
- W274926194 startingPage "78" @default.
- W274926194 abstract "Precise predictions of wind speed play important role in determining the feasibility of harnessing wind energy. In fact, reliable wind predictions offer secure and minimal economic risk situation to operators and investors. This paper presents a new model based upon extreme learning machine (ELM) for sensor-less estimation of wind speed based on wind turbine parameters. The inputs for estimating the wind speed are wind turbine power coefficient, blade pitch angle, and rotational speed. In order to validate authors compared prediction of ELM model with the predictions with genetic programming (GP), artificial neural network (ANN) and support vector machine with radial basis kernel function (SVM-RBF). This investigation analyzed the reliability of these computational models using the simulation results and three statistical tests. The three statistical tests includes the Pearson correlation coefficient, coefficient of determination and root-mean-square error. Finally, this study compared predicted wind speeds from each method against actual measurement data. Simulation results, clearly demonstrate that ELM can be utilized effectively in applications of sensor-less wind speed predictions. Concisely, the survey results show that the proposed ELM model is suitable and precise for sensor-less wind speed predictions and has much higher performance than the other approaches examined in this study." @default.
- W274926194 created "2016-06-24" @default.
- W274926194 creator A5003210845 @default.
- W274926194 creator A5026340328 @default.
- W274926194 creator A5065328445 @default.
- W274926194 creator A5076204864 @default.
- W274926194 creator A5076227658 @default.
- W274926194 creator A5086550972 @default.
- W274926194 date "2016-03-01" @default.
- W274926194 modified "2023-10-15" @default.
- W274926194 title "Extreme learning machine approach for sensorless wind speed estimation" @default.
- W274926194 cites W1965113494 @default.
- W274926194 cites W1965687207 @default.
- W274926194 cites W1967173808 @default.
- W274926194 cites W1977127140 @default.
- W274926194 cites W1980435785 @default.
- W274926194 cites W1982034727 @default.
- W274926194 cites W1989949705 @default.
- W274926194 cites W1993862132 @default.
- W274926194 cites W2004799078 @default.
- W274926194 cites W2005757740 @default.
- W274926194 cites W2006665872 @default.
- W274926194 cites W2017169713 @default.
- W274926194 cites W2035478691 @default.
- W274926194 cites W2043812828 @default.
- W274926194 cites W2044051645 @default.
- W274926194 cites W2048110349 @default.
- W274926194 cites W2054337296 @default.
- W274926194 cites W2059776567 @default.
- W274926194 cites W2061673123 @default.
- W274926194 cites W2063143152 @default.
- W274926194 cites W2075795910 @default.
- W274926194 cites W2077689216 @default.
- W274926194 cites W2079522653 @default.
- W274926194 cites W2086981452 @default.
- W274926194 cites W2087267299 @default.
- W274926194 cites W2088514898 @default.
- W274926194 cites W2094324295 @default.
- W274926194 cites W2099707596 @default.
- W274926194 cites W2111072639 @default.
- W274926194 cites W2114471530 @default.
- W274926194 cites W2131826737 @default.
- W274926194 cites W2141695047 @default.
- W274926194 cites W2142099769 @default.
- W274926194 cites W2153272791 @default.
- W274926194 cites W2158054309 @default.
- W274926194 cites W2158224578 @default.
- W274926194 cites W2161015425 @default.
- W274926194 cites W4246438352 @default.
- W274926194 doi "https://doi.org/10.1016/j.mechatronics.2015.04.007" @default.
- W274926194 hasPublicationYear "2016" @default.
- W274926194 type Work @default.
- W274926194 sameAs 274926194 @default.
- W274926194 citedByCount "53" @default.
- W274926194 countsByYear W2749261942016 @default.
- W274926194 countsByYear W2749261942017 @default.
- W274926194 countsByYear W2749261942018 @default.
- W274926194 countsByYear W2749261942019 @default.
- W274926194 countsByYear W2749261942020 @default.
- W274926194 countsByYear W2749261942021 @default.
- W274926194 countsByYear W2749261942022 @default.
- W274926194 countsByYear W2749261942023 @default.
- W274926194 crossrefType "journal-article" @default.
- W274926194 hasAuthorship W274926194A5003210845 @default.
- W274926194 hasAuthorship W274926194A5026340328 @default.
- W274926194 hasAuthorship W274926194A5065328445 @default.
- W274926194 hasAuthorship W274926194A5076204864 @default.
- W274926194 hasAuthorship W274926194A5076227658 @default.
- W274926194 hasAuthorship W274926194A5086550972 @default.
- W274926194 hasConcept C105795698 @default.
- W274926194 hasConcept C119599485 @default.
- W274926194 hasConcept C119857082 @default.
- W274926194 hasConcept C121332964 @default.
- W274926194 hasConcept C12267149 @default.
- W274926194 hasConcept C127413603 @default.
- W274926194 hasConcept C139945424 @default.
- W274926194 hasConcept C146978453 @default.
- W274926194 hasConcept C153294291 @default.
- W274926194 hasConcept C154945302 @default.
- W274926194 hasConcept C161067210 @default.
- W274926194 hasConcept C163258240 @default.
- W274926194 hasConcept C2775924081 @default.
- W274926194 hasConcept C2778449969 @default.
- W274926194 hasConcept C2780092901 @default.
- W274926194 hasConcept C2780150128 @default.
- W274926194 hasConcept C33923547 @default.
- W274926194 hasConcept C41008148 @default.
- W274926194 hasConcept C43214815 @default.
- W274926194 hasConcept C44154836 @default.
- W274926194 hasConcept C47446073 @default.
- W274926194 hasConcept C50644808 @default.
- W274926194 hasConcept C55078378 @default.
- W274926194 hasConcept C62520636 @default.
- W274926194 hasConcept C78519656 @default.
- W274926194 hasConcept C78600449 @default.
- W274926194 hasConcept C81063470 @default.
- W274926194 hasConceptScore W274926194C105795698 @default.
- W274926194 hasConceptScore W274926194C119599485 @default.