Matches in SemOpenAlex for { <https://semopenalex.org/work/W2749318049> ?p ?o ?g. }
- W2749318049 endingPage "140" @default.
- W2749318049 startingPage "128" @default.
- W2749318049 abstract "Abstract Streams and rivers can be highly reactive sites for nitrogen (N) transformation and removal. Empirical and model‐based research show how location in a stream network affects rates of N removal. Because the structure of stream networks can vary widely and N cycling in headwater streams may affect N cycling in downstream reaches, we hypothesised that network structure may affect whole stream network processing of N. We generated three stream networks with the same catchment area but differing shapes, based on optimal channel network theory. We applied a model of nitrate ( ) transport and denitrification, and implemented model scenarios to examine how network shape affects removal with (1) increased loading from the catchment, (2) altered spatial distributions of loading and (3) decreased drainage density (i.e. loss of headwater streams). For all stream networks, the fraction of total removed decreased with increasing loading from the catchment. Stream networks in narrow catchments removed a higher fraction of , particularly at intermediate loading rates. Network shape also controlled the distribution of removal in small versus large streams, with larger streams removing a higher fraction of the total load in narrower networks. The effects of network shape on removal when the spatial distribution of loading was altered varied with the magnitude of loading. At low loads, was entirely removed when added to distal parts of the stream network, and about 50% removed when added near the outlet; there was no effect of network shape. At intermediate and high loads, the fraction of total load removed by the narrow stream network was 1.5× higher than the rectangular and square networks when was added to distal parts of the networks. Network shape did not have an effect when load occurred near the outlet, regardless of the magnitude of the load. The fraction of total removed by the stream network was up to 5% lower when drainage density was reduced from 1.0 to 0.74 km −1 , with the least change for the narrow network. Reducing the drainage density also altered the role of small relative to large streams, with the net effect of moving the location of removal downstream. Overall, effects of network shape contributed up to 20% of the variation in the fraction of removed by stream networks. Network shape was most important at intermediate to high loads and when was loaded to distal parts of the catchment. The narrow network removed more across model scenarios, with elevated removal in larger streams explaining most of the difference. We suggest the shape of the catchment may modulate the degree to which large streams contribute to whole network removal." @default.
- W2749318049 created "2017-08-31" @default.
- W2749318049 creator A5067941959 @default.
- W2749318049 creator A5081521179 @default.
- W2749318049 creator A5083974958 @default.
- W2749318049 date "2017-08-22" @default.
- W2749318049 modified "2023-09-30" @default.
- W2749318049 title "How network structure can affect nitrogen removal by streams" @default.
- W2749318049 cites W1153006977 @default.
- W2749318049 cites W1501976627 @default.
- W2749318049 cites W1524697889 @default.
- W2749318049 cites W1527419759 @default.
- W2749318049 cites W1550636483 @default.
- W2749318049 cites W1587869157 @default.
- W2749318049 cites W1660434011 @default.
- W2749318049 cites W1903997937 @default.
- W2749318049 cites W1930996030 @default.
- W2749318049 cites W1952040787 @default.
- W2749318049 cites W1963119148 @default.
- W2749318049 cites W1971233020 @default.
- W2749318049 cites W1974803579 @default.
- W2749318049 cites W1990436032 @default.
- W2749318049 cites W1993284672 @default.
- W2749318049 cites W1993326605 @default.
- W2749318049 cites W2003912780 @default.
- W2749318049 cites W2007864552 @default.
- W2749318049 cites W2009050886 @default.
- W2749318049 cites W2011731564 @default.
- W2749318049 cites W2013131934 @default.
- W2749318049 cites W2013596075 @default.
- W2749318049 cites W2017019925 @default.
- W2749318049 cites W2021324314 @default.
- W2749318049 cites W2026113472 @default.
- W2749318049 cites W2028469596 @default.
- W2749318049 cites W2034273381 @default.
- W2749318049 cites W2034448506 @default.
- W2749318049 cites W2036528377 @default.
- W2749318049 cites W2048446984 @default.
- W2749318049 cites W2048500746 @default.
- W2749318049 cites W2058442609 @default.
- W2749318049 cites W2059944622 @default.
- W2749318049 cites W2068960764 @default.
- W2749318049 cites W2077541573 @default.
- W2749318049 cites W2095222099 @default.
- W2749318049 cites W2096900000 @default.
- W2749318049 cites W2097175786 @default.
- W2749318049 cites W2099180624 @default.
- W2749318049 cites W2099798890 @default.
- W2749318049 cites W2101028409 @default.
- W2749318049 cites W2104497939 @default.
- W2749318049 cites W2107371508 @default.
- W2749318049 cites W2112863519 @default.
- W2749318049 cites W2116544104 @default.
- W2749318049 cites W2125607969 @default.
- W2749318049 cites W2125746681 @default.
- W2749318049 cites W2129163149 @default.
- W2749318049 cites W2131679562 @default.
- W2749318049 cites W2135003112 @default.
- W2749318049 cites W2138436021 @default.
- W2749318049 cites W2140110772 @default.
- W2749318049 cites W2140572317 @default.
- W2749318049 cites W2153424440 @default.
- W2749318049 cites W2158214141 @default.
- W2749318049 cites W2160305415 @default.
- W2749318049 cites W2165360549 @default.
- W2749318049 cites W2173929419 @default.
- W2749318049 cites W2193240865 @default.
- W2749318049 cites W2466554424 @default.
- W2749318049 cites W2551790965 @default.
- W2749318049 cites W2612337017 @default.
- W2749318049 cites W2623588820 @default.
- W2749318049 cites W2626302548 @default.
- W2749318049 doi "https://doi.org/10.1111/fwb.12990" @default.
- W2749318049 hasPublicationYear "2017" @default.
- W2749318049 type Work @default.
- W2749318049 sameAs 2749318049 @default.
- W2749318049 citedByCount "56" @default.
- W2749318049 countsByYear W27493180492017 @default.
- W2749318049 countsByYear W27493180492018 @default.
- W2749318049 countsByYear W27493180492019 @default.
- W2749318049 countsByYear W27493180492020 @default.
- W2749318049 countsByYear W27493180492021 @default.
- W2749318049 countsByYear W27493180492022 @default.
- W2749318049 countsByYear W27493180492023 @default.
- W2749318049 crossrefType "journal-article" @default.
- W2749318049 hasAuthorship W2749318049A5067941959 @default.
- W2749318049 hasAuthorship W2749318049A5081521179 @default.
- W2749318049 hasAuthorship W2749318049A5083974958 @default.
- W2749318049 hasBestOaLocation W27493180491 @default.
- W2749318049 hasConcept C126645576 @default.
- W2749318049 hasConcept C127313418 @default.
- W2749318049 hasConcept C159390177 @default.
- W2749318049 hasConcept C166957645 @default.
- W2749318049 hasConcept C178790620 @default.
- W2749318049 hasConcept C185592680 @default.
- W2749318049 hasConcept C187320778 @default.
- W2749318049 hasConcept C18903297 @default.
- W2749318049 hasConcept C205649164 @default.