Matches in SemOpenAlex for { <https://semopenalex.org/work/W2749562774> ?p ?o ?g. }
- W2749562774 endingPage "16634" @default.
- W2749562774 startingPage "16618" @default.
- W2749562774 abstract "K-nearest neighbor rule (KNN) and sparse representation (SR) are widely used algorithms in pattern classification. In this paper, we propose two new nearest neighbor classification methods, in which the novel weighted voting methods are developed for making classification decisions on the basis of sparse coefficients in the SR. Since the sparse coefficients can well reflect the neighborhood structure of data, we mainly utilize them to design classifier in the proposed methods. One proposed method is called the coefficient-weighted KNN classifier, which adopts sparse coefficients to choose KNNs of a query sample and then uses the coefficients corresponding to the chosen neighbors as their weights for classification. Another new method is the residual-weighted KNN classifier (RWKNN). In the RWKNN, KNNs of a query sample are first determined by sparse coefficients, and then, we design a novel residual-based weighted voting method for the KNN classification. The extensive experiments are carried out on many UCI and KEEL data sets, and the experimental results show that the proposed methods perform well." @default.
- W2749562774 created "2017-08-31" @default.
- W2749562774 creator A5014128597 @default.
- W2749562774 creator A5014163978 @default.
- W2749562774 creator A5042645332 @default.
- W2749562774 creator A5052292368 @default.
- W2749562774 creator A5062744888 @default.
- W2749562774 date "2017-01-01" @default.
- W2749562774 modified "2023-10-15" @default.
- W2749562774 title "Sparse Coefficient-Based ${k}$ -Nearest Neighbor Classification" @default.
- W2749562774 cites W1904464160 @default.
- W2749562774 cites W1964541653 @default.
- W2749562774 cites W1982405594 @default.
- W2749562774 cites W1984095169 @default.
- W2749562774 cites W1993497945 @default.
- W2749562774 cites W2010554528 @default.
- W2749562774 cites W2015190966 @default.
- W2749562774 cites W2030754587 @default.
- W2749562774 cites W2042608585 @default.
- W2749562774 cites W2045757377 @default.
- W2749562774 cites W2047664885 @default.
- W2749562774 cites W2050834445 @default.
- W2749562774 cites W2051545768 @default.
- W2749562774 cites W2052575990 @default.
- W2749562774 cites W2062957446 @default.
- W2749562774 cites W2070127246 @default.
- W2749562774 cites W2085400714 @default.
- W2749562774 cites W2092855714 @default.
- W2749562774 cites W2095306443 @default.
- W2749562774 cites W2096166399 @default.
- W2749562774 cites W2103705607 @default.
- W2749562774 cites W2122111042 @default.
- W2749562774 cites W2129578806 @default.
- W2749562774 cites W2129812935 @default.
- W2749562774 cites W2130187411 @default.
- W2749562774 cites W2130695501 @default.
- W2749562774 cites W2132467081 @default.
- W2749562774 cites W2141607429 @default.
- W2749562774 cites W2142827986 @default.
- W2749562774 cites W2149894778 @default.
- W2749562774 cites W2150708814 @default.
- W2749562774 cites W2151973236 @default.
- W2749562774 cites W2172374880 @default.
- W2749562774 cites W2294941227 @default.
- W2749562774 cites W2328384442 @default.
- W2749562774 cites W2344022952 @default.
- W2749562774 cites W2522684508 @default.
- W2749562774 cites W2557490984 @default.
- W2749562774 cites W2591362068 @default.
- W2749562774 cites W4250955649 @default.
- W2749562774 doi "https://doi.org/10.1109/access.2017.2739807" @default.
- W2749562774 hasPublicationYear "2017" @default.
- W2749562774 type Work @default.
- W2749562774 sameAs 2749562774 @default.
- W2749562774 citedByCount "42" @default.
- W2749562774 countsByYear W27495627742017 @default.
- W2749562774 countsByYear W27495627742018 @default.
- W2749562774 countsByYear W27495627742019 @default.
- W2749562774 countsByYear W27495627742020 @default.
- W2749562774 countsByYear W27495627742021 @default.
- W2749562774 countsByYear W27495627742022 @default.
- W2749562774 countsByYear W27495627742023 @default.
- W2749562774 crossrefType "journal-article" @default.
- W2749562774 hasAuthorship W2749562774A5014128597 @default.
- W2749562774 hasAuthorship W2749562774A5014163978 @default.
- W2749562774 hasAuthorship W2749562774A5042645332 @default.
- W2749562774 hasAuthorship W2749562774A5052292368 @default.
- W2749562774 hasAuthorship W2749562774A5062744888 @default.
- W2749562774 hasBestOaLocation W27495627741 @default.
- W2749562774 hasConcept C113238511 @default.
- W2749562774 hasConcept C11413529 @default.
- W2749562774 hasConcept C124066611 @default.
- W2749562774 hasConcept C124101348 @default.
- W2749562774 hasConcept C132778050 @default.
- W2749562774 hasConcept C153180895 @default.
- W2749562774 hasConcept C154945302 @default.
- W2749562774 hasConcept C155512373 @default.
- W2749562774 hasConcept C17744445 @default.
- W2749562774 hasConcept C199539241 @default.
- W2749562774 hasConcept C33923547 @default.
- W2749562774 hasConcept C41008148 @default.
- W2749562774 hasConcept C520049643 @default.
- W2749562774 hasConcept C94475309 @default.
- W2749562774 hasConcept C94625758 @default.
- W2749562774 hasConcept C95623464 @default.
- W2749562774 hasConceptScore W2749562774C113238511 @default.
- W2749562774 hasConceptScore W2749562774C11413529 @default.
- W2749562774 hasConceptScore W2749562774C124066611 @default.
- W2749562774 hasConceptScore W2749562774C124101348 @default.
- W2749562774 hasConceptScore W2749562774C132778050 @default.
- W2749562774 hasConceptScore W2749562774C153180895 @default.
- W2749562774 hasConceptScore W2749562774C154945302 @default.
- W2749562774 hasConceptScore W2749562774C155512373 @default.
- W2749562774 hasConceptScore W2749562774C17744445 @default.
- W2749562774 hasConceptScore W2749562774C199539241 @default.
- W2749562774 hasConceptScore W2749562774C33923547 @default.
- W2749562774 hasConceptScore W2749562774C41008148 @default.
- W2749562774 hasConceptScore W2749562774C520049643 @default.