Matches in SemOpenAlex for { <https://semopenalex.org/work/W2749667584> ?p ?o ?g. }
- W2749667584 endingPage "147" @default.
- W2749667584 startingPage "147" @default.
- W2749667584 abstract "Chinese cities are experiencing severe air pollution in particular, with extremely high PM2.5 levels observed in cold seasons. Accurate forecasting of occurrence of such air pollution events in advance can help the community to take action to abate emissions and would ultimately benefit the citizens. To improve the PM2.5 air quality model forecasts in China, we proposed a bias-correction framework that utilized the historic relationship between the model biases and forecasted and observational variables to post-process the current forecasts. The framework consists of four components: (1) a feature selector that chooses the variables that are informative to model forecast bias based on historic data; (2) a classifier trained to efficiently determine the forecast analogs (clusters) based on clustering analysis, such as the distance-based method and the classification tree, etc.; (3) an error estimator, such as the Kalman filter, to predict model forecast errors at monitoring sites based on forecast analogs; and (4) a spatial interpolator to estimate the bias correction over the entire modeling domain. One or more methods were tested for each step. We applied five combinations of these methods to PM2.5 forecasts in 2014–2016 over China from the operational AiMa air quality forecasting system using the Community Multiscale Air Quality (CMAQ) model. All five methods were able to improve forecast performance in terms of normalized mean error (NME) and root mean square error (RMSE), though to a relatively limited degree due to the rapid changing of emission rates in China. Among the five methods, the CART-LM-KF-AN (a Classification And Regression Trees-Linear Model-Kalman Filter-Analog combination) method appears to have the best overall performance for varied lead times. While the details of our study are specific to the forecast system, the bias-correction framework is likely applicable to the other air quality model forecast as well." @default.
- W2749667584 created "2017-08-31" @default.
- W2749667584 creator A5013420053 @default.
- W2749667584 creator A5020538206 @default.
- W2749667584 creator A5043816646 @default.
- W2749667584 date "2017-08-13" @default.
- W2749667584 modified "2023-10-06" @default.
- W2749667584 title "Improving PM2.5 Air Quality Model Forecasts in China Using a Bias-Correction Framework" @default.
- W2749667584 cites W1532502003 @default.
- W2749667584 cites W1964343574 @default.
- W2749667584 cites W1970413676 @default.
- W2749667584 cites W1980081252 @default.
- W2749667584 cites W1986149296 @default.
- W2749667584 cites W1992739954 @default.
- W2749667584 cites W1999197379 @default.
- W2749667584 cites W2003831290 @default.
- W2749667584 cites W2005160638 @default.
- W2749667584 cites W2008544320 @default.
- W2749667584 cites W2008641894 @default.
- W2749667584 cites W2016703826 @default.
- W2749667584 cites W2032988043 @default.
- W2749667584 cites W2040328014 @default.
- W2749667584 cites W2059303903 @default.
- W2749667584 cites W2059967806 @default.
- W2749667584 cites W2068726711 @default.
- W2749667584 cites W2083436606 @default.
- W2749667584 cites W2090410338 @default.
- W2749667584 cites W2091214913 @default.
- W2749667584 cites W2092262061 @default.
- W2749667584 cites W2099534828 @default.
- W2749667584 cites W2122732384 @default.
- W2749667584 cites W2132549764 @default.
- W2749667584 cites W2134515105 @default.
- W2749667584 cites W2154281885 @default.
- W2749667584 cites W2157539394 @default.
- W2749667584 cites W2165680013 @default.
- W2749667584 cites W2202013945 @default.
- W2749667584 cites W2322738056 @default.
- W2749667584 cites W2402894798 @default.
- W2749667584 cites W2461586262 @default.
- W2749667584 cites W2493674548 @default.
- W2749667584 cites W2523277388 @default.
- W2749667584 cites W2529846738 @default.
- W2749667584 cites W2564173216 @default.
- W2749667584 cites W2573212922 @default.
- W2749667584 cites W2579196193 @default.
- W2749667584 cites W4210949798 @default.
- W2749667584 cites W4236504565 @default.
- W2749667584 cites W4254221643 @default.
- W2749667584 doi "https://doi.org/10.3390/atmos8080147" @default.
- W2749667584 hasPublicationYear "2017" @default.
- W2749667584 type Work @default.
- W2749667584 sameAs 2749667584 @default.
- W2749667584 citedByCount "36" @default.
- W2749667584 countsByYear W27496675842018 @default.
- W2749667584 countsByYear W27496675842019 @default.
- W2749667584 countsByYear W27496675842020 @default.
- W2749667584 countsByYear W27496675842021 @default.
- W2749667584 countsByYear W27496675842022 @default.
- W2749667584 countsByYear W27496675842023 @default.
- W2749667584 crossrefType "journal-article" @default.
- W2749667584 hasAuthorship W2749667584A5013420053 @default.
- W2749667584 hasAuthorship W2749667584A5020538206 @default.
- W2749667584 hasAuthorship W2749667584A5043816646 @default.
- W2749667584 hasBestOaLocation W27496675841 @default.
- W2749667584 hasConcept C105795698 @default.
- W2749667584 hasConcept C107054158 @default.
- W2749667584 hasConcept C119857082 @default.
- W2749667584 hasConcept C119898033 @default.
- W2749667584 hasConcept C126314574 @default.
- W2749667584 hasConcept C139945424 @default.
- W2749667584 hasConcept C140178040 @default.
- W2749667584 hasConcept C149782125 @default.
- W2749667584 hasConcept C153294291 @default.
- W2749667584 hasConcept C170061395 @default.
- W2749667584 hasConcept C185429906 @default.
- W2749667584 hasConcept C205649164 @default.
- W2749667584 hasConcept C2776845762 @default.
- W2749667584 hasConcept C33923547 @default.
- W2749667584 hasConcept C39432304 @default.
- W2749667584 hasConcept C41008148 @default.
- W2749667584 hasConcept C73555534 @default.
- W2749667584 hasConceptScore W2749667584C105795698 @default.
- W2749667584 hasConceptScore W2749667584C107054158 @default.
- W2749667584 hasConceptScore W2749667584C119857082 @default.
- W2749667584 hasConceptScore W2749667584C119898033 @default.
- W2749667584 hasConceptScore W2749667584C126314574 @default.
- W2749667584 hasConceptScore W2749667584C139945424 @default.
- W2749667584 hasConceptScore W2749667584C140178040 @default.
- W2749667584 hasConceptScore W2749667584C149782125 @default.
- W2749667584 hasConceptScore W2749667584C153294291 @default.
- W2749667584 hasConceptScore W2749667584C170061395 @default.
- W2749667584 hasConceptScore W2749667584C185429906 @default.
- W2749667584 hasConceptScore W2749667584C205649164 @default.
- W2749667584 hasConceptScore W2749667584C2776845762 @default.
- W2749667584 hasConceptScore W2749667584C33923547 @default.
- W2749667584 hasConceptScore W2749667584C39432304 @default.
- W2749667584 hasConceptScore W2749667584C41008148 @default.