Matches in SemOpenAlex for { <https://semopenalex.org/work/W2749888980> ?p ?o ?g. }
- W2749888980 endingPage "2066" @default.
- W2749888980 startingPage "2056" @default.
- W2749888980 abstract "Geological carbon sequestration (GCS) in deep saline aquifers is an effective means for storing carbon dioxide to address global climate change. As the time after injection increases, the safety of storage increases as the CO2 transforms from a separate phase to CO2(aq) and HCO3- by dissolution and then to carbonates by mineral dissolution. However, subsequent depressurization could lead to dissolved CO2(aq) escaping from the formation water and creating a new separate phase which may reduce the GCS system safety. The mineral dissolution and the CO2 exsolution and mineral precipitation during depressurization change the morphology, porosity, and permeability of the porous rock medium, which then affects the two-phase flow of the CO2 and formation water. A better understanding of these effects on the CO2-water two-phase flow will improve predictions of the long-term CO2 storage reliability, especially the impact of depressurization on the long-term stability. In this Account, we summarize our recent work on the effect of CO2 exsolution and mineral dissolution/precipitation on CO2 transport in GCS reservoirs. We place emphasis on understanding the behavior and transformation of the carbon components in the reservoir, including CO2(sc/g), CO2(aq), HCO3-, and carbonate minerals (calcite and dolomite), highlight their transport and mobility by coupled geochemical and two-phase flow processes, and consider the implications of these transport mechanisms on estimates of the long-term safety of GCS. We describe experimental and numerical pore- and core-scale methods used in our lab in conjunction with industrial and international partners to investigate these effects. Experimental results show how mineral dissolution affects permeability, capillary pressure, and relative permeability, which are important phenomena affecting the input parameters for reservoir flow modeling. The porosity and the absolute permeability increase when CO2 dissolved water is continuously injected through the core. The MRI results indicate dissolution of the carbonates during the experiments since the porosity has been increased after the core-flooding experiments. The mineral dissolution changes the pore structure by enlarging the throat diameters and decreasing the pore specific surface areas, resulting in lower CO2/water capillary pressures and changes in the relative permeability. When the reservoir pressure decreases, the CO2 exsolution occurs due to the reduction of solubility. The CO2 bubbles preferentially grow toward the larger pores instead of toward the throats or the finer pores during the depressurization. After exsolution, the exsolved CO2 phase shows low mobility due to the highly dispersed pore-scale morphology, and the well dispersed small bubbles tend to merge without interface contact driven by the Ostwald ripening mechanism. During depressurization, the dissolved carbonate could also precipitate as a result of increasing pH. There is increasing formation water flow resistance and low mobility of the CO2 in the presence of CO2 exsolution and carbonate precipitation. These effects produce a self-sealing mechanism that may reduce unfavorable CO2 migration even in the presence of sudden reservoir depressurization." @default.
- W2749888980 created "2017-08-31" @default.
- W2749888980 creator A5017214158 @default.
- W2749888980 creator A5026693699 @default.
- W2749888980 creator A5052538652 @default.
- W2749888980 creator A5068285627 @default.
- W2749888980 creator A5080138605 @default.
- W2749888980 date "2017-08-16" @default.
- W2749888980 modified "2023-10-14" @default.
- W2749888980 title "Effect of Mineral Dissolution/Precipitation and CO<sub>2</sub> Exsolution on CO<sub>2</sub> transport in Geological Carbon Storage" @default.
- W2749888980 cites W1580868964 @default.
- W2749888980 cites W1593347402 @default.
- W2749888980 cites W1662122281 @default.
- W2749888980 cites W1715420317 @default.
- W2749888980 cites W1753239825 @default.
- W2749888980 cites W1836635798 @default.
- W2749888980 cites W1869469244 @default.
- W2749888980 cites W1964950741 @default.
- W2749888980 cites W1965307781 @default.
- W2749888980 cites W1974592281 @default.
- W2749888980 cites W1985762111 @default.
- W2749888980 cites W1993192265 @default.
- W2749888980 cites W1994338066 @default.
- W2749888980 cites W2014657543 @default.
- W2749888980 cites W2022792670 @default.
- W2749888980 cites W2029878370 @default.
- W2749888980 cites W2043502390 @default.
- W2749888980 cites W2065824234 @default.
- W2749888980 cites W2066237496 @default.
- W2749888980 cites W2074092889 @default.
- W2749888980 cites W2076283593 @default.
- W2749888980 cites W2079035077 @default.
- W2749888980 cites W2081154130 @default.
- W2749888980 cites W2081405217 @default.
- W2749888980 cites W2093547237 @default.
- W2749888980 cites W2131119808 @default.
- W2749888980 cites W2148022759 @default.
- W2749888980 cites W2167997404 @default.
- W2749888980 cites W2170976584 @default.
- W2749888980 cites W2175034970 @default.
- W2749888980 cites W2233682915 @default.
- W2749888980 cites W2320843762 @default.
- W2749888980 cites W2323129703 @default.
- W2749888980 cites W2331702654 @default.
- W2749888980 cites W2332729353 @default.
- W2749888980 cites W2335387859 @default.
- W2749888980 cites W2381069085 @default.
- W2749888980 cites W2482661796 @default.
- W2749888980 cites W2528726810 @default.
- W2749888980 cites W2558994519 @default.
- W2749888980 cites W2611802251 @default.
- W2749888980 cites W2728229428 @default.
- W2749888980 doi "https://doi.org/10.1021/acs.accounts.6b00651" @default.
- W2749888980 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28812872" @default.
- W2749888980 hasPublicationYear "2017" @default.
- W2749888980 type Work @default.
- W2749888980 sameAs 2749888980 @default.
- W2749888980 citedByCount "47" @default.
- W2749888980 countsByYear W27498889802018 @default.
- W2749888980 countsByYear W27498889802019 @default.
- W2749888980 countsByYear W27498889802020 @default.
- W2749888980 countsByYear W27498889802021 @default.
- W2749888980 countsByYear W27498889802022 @default.
- W2749888980 countsByYear W27498889802023 @default.
- W2749888980 crossrefType "journal-article" @default.
- W2749888980 hasAuthorship W2749888980A5017214158 @default.
- W2749888980 hasAuthorship W2749888980A5026693699 @default.
- W2749888980 hasAuthorship W2749888980A5052538652 @default.
- W2749888980 hasAuthorship W2749888980A5068285627 @default.
- W2749888980 hasAuthorship W2749888980A5080138605 @default.
- W2749888980 hasBestOaLocation W27498889801 @default.
- W2749888980 hasConcept C107054158 @default.
- W2749888980 hasConcept C111368507 @default.
- W2749888980 hasConcept C121332964 @default.
- W2749888980 hasConcept C127313418 @default.
- W2749888980 hasConcept C132651083 @default.
- W2749888980 hasConcept C147789679 @default.
- W2749888980 hasConcept C153294291 @default.
- W2749888980 hasConcept C178790620 @default.
- W2749888980 hasConcept C185592680 @default.
- W2749888980 hasConcept C187320778 @default.
- W2749888980 hasConcept C199289684 @default.
- W2749888980 hasConcept C22884784 @default.
- W2749888980 hasConcept C2776432453 @default.
- W2749888980 hasConcept C2778379663 @default.
- W2749888980 hasConcept C2779002002 @default.
- W2749888980 hasConcept C2780181037 @default.
- W2749888980 hasConcept C2780191791 @default.
- W2749888980 hasConcept C2780659211 @default.
- W2749888980 hasConcept C39432304 @default.
- W2749888980 hasConcept C530467964 @default.
- W2749888980 hasConcept C75622301 @default.
- W2749888980 hasConcept C76177295 @default.
- W2749888980 hasConcept C88380143 @default.
- W2749888980 hasConceptScore W2749888980C107054158 @default.
- W2749888980 hasConceptScore W2749888980C111368507 @default.
- W2749888980 hasConceptScore W2749888980C121332964 @default.
- W2749888980 hasConceptScore W2749888980C127313418 @default.